Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Co-Heyting algebras
 5.1 Properties
 5.2 Operations
 5.3 Stable internal coHom
 5.4 Add-methods

5 Co-Heyting algebras

5.1 Properties

5.1-1 IsCoHeytingAlgebroid
‣ IsCoHeytingAlgebroid( C )( property )

Returns: true or false

The property of C being a co-Heyting algebroid.

5.1-2 IsCoHeytingAlgebra
‣ IsCoHeytingAlgebra( C )( property )

Returns: true or false

The property of C being a co-Heyting algebra.

5.2 Operations

5.2-1 ConegationOnObjects
‣ ConegationOnObjects( a )( attribute )

Returns: an object

The argument is an object \(a\). The output is its co-negated object \(\ulcorner a\).

5.2-2 ConegationOnMorphisms
‣ ConegationOnMorphisms( alpha )( attribute )

Returns: a morphism in \(\mathrm{Hom}( \ulcorner b, \ulcorner a )\).

The argument is a morphism \(\alpha: a \rightarrow b\). The output is its negated morphism \(\ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a\).

5.2-3 ConegationOnMorphismsWithGivenConegations
‣ ConegationOnMorphismsWithGivenConegations( s, alpha, r )( operation )

Returns: a morphism in \(\mathrm{Hom}( \ulcorner b, \ulcorner a )\).

The argument is an object \(s = \ulcorner b\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = \ulcorner a\). The output is the negated morphism \(\ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a\).

5.2-4 MorphismFromDoubleConegation
‣ MorphismFromDoubleConegation( a )( attribute )

Returns: a morphism in \(\mathrm{Hom}(\ulcorner\ulcorner a, a)\).

The argument is an object \(a\). The output is the morphism from the double conegation \(\ulcorner\ulcorner a \rightarrow a\).

5.2-5 MorphismFromDoubleConegationWithGivenDoubleConegation
‣ MorphismFromDoubleConegationWithGivenDoubleConegation( a, r )( operation )

Returns: a morphism in \(\mathrm{Hom}(\ulcorner\ulcorner a, a)\).

The arguments are an object \(a\), and an object \(r = \ulcorner\ulcorner a\). The output is the morphism from the double conegation \(\ulcorner\ulcorner a \rightarrow a\).

5.3 Stable internal coHom

5.3-1 StableInternalCoHom
‣ StableInternalCoHom( V, W )( operation )

Returns: a CAP object

Return the stable internal coHom: \(\mathrm{\underline{coHom}}(\mathrm{\underline{coHom}}(...\mathrm{\underline{coHom}}(V,W)...,W),W)\).

5.4 Add-methods

5.4-1 AddConegationOnMorphisms
‣ AddConegationOnMorphisms( C, F )( operation )
‣ AddConegationOnMorphisms( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnMorphisms. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( alpha ) \mapsto \mathtt{ConegationOnMorphisms}(alpha)\).

5.4-2 AddConegationOnMorphismsWithGivenConegations
‣ AddConegationOnMorphismsWithGivenConegations( C, F )( operation )
‣ AddConegationOnMorphismsWithGivenConegations( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnMorphismsWithGivenConegations. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( s, alpha, r ) \mapsto \mathtt{ConegationOnMorphismsWithGivenConegations}(s, alpha, r)\).

5.4-3 AddConegationOnObjects
‣ AddConegationOnObjects( C, F )( operation )
‣ AddConegationOnObjects( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnObjects. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2 ) \mapsto \mathtt{ConegationOnObjects}(arg2)\).

5.4-4 AddMorphismFromDoubleConegation
‣ AddMorphismFromDoubleConegation( C, F )( operation )
‣ AddMorphismFromDoubleConegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromDoubleConegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a ) \mapsto \mathtt{MorphismFromDoubleConegation}(a)\).

5.4-5 AddMorphismFromDoubleConegationWithGivenDoubleConegation
‣ AddMorphismFromDoubleConegationWithGivenDoubleConegation( C, F )( operation )
‣ AddMorphismFromDoubleConegationWithGivenDoubleConegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromDoubleConegationWithGivenDoubleConegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, s ) \mapsto \mathtt{MorphismFromDoubleConegationWithGivenDoubleConegation}(a, s)\).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind

generated by GAPDoc2HTML