‣ MeetSemilatticeOfSingleDifferences ( L ) | ( attribute ) |
Returns: a CAP category
Construct the meet-semilattice of differences from the lattice L.
10.1-2 \-
‣ \- ( A, B ) | ( operation ) |
‣ FormalDifferenceOfNormalizedObjects ( u ) | ( operation ) |
Form the formal single difference object A - B. The expression A - 0 := A - InitialObject
( CapCategory
( A ) ). The expression - A := TerminalObject
( CapCategory
( A ) ) - A. FormalDifferenceOfNormalizedObjects
assumes that A and B are normalized
‣ MinuendAndSubtrahendInUnderlyingLattice ( A ) | ( operation ) |
Returns: a pair of objects in a thin category
A pair in the underlying lattice representing the formal single difference A.
‣ DistinguishedSubtrahend ( A ) | ( operation ) |
Returns: an object in a thin category
The output S
should satisfy A.I - S
= A. The standard method returns NormalizedDistinguishedSubtrahend
( A ) if HasNormalizedDistinguishedSubtrahend
( A ) = true
or PreDistinguishedSubtrahend
( A ) if HasPreDistinguishedSubtrahend
( A ) = true
. The remaining behavior is unspecified.
‣ IsMeetSemilatticeOfSingleDifferences ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of a meet-semilattice of single differences.
‣ IsObjectInMeetSemilatticeOfSingleDifferences ( object ) | ( filter ) |
Returns: true
or false
The GAP category of objects in a meet-semilattice of differences.
‣ IsMorphismInMeetSemilatticeOfSingleDifferences ( morphism ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in a meet-semilattice of differences.
generated by GAPDoc2HTML