‣ MeetSemilatticeOfSingleDifferences( L ) | ( attribute ) |
Returns: a CAP category
Construct the meet-semilattice of differences from the lattice L.
10.1-2 \-‣ \-( A, B ) | ( operation ) |
‣ FormalDifferenceOfNormalizedObjects( u ) | ( operation ) |
Form the formal single difference object A - B. The expression A - 0 := A - InitialObject( CapCategory( A ) ). The expression - A := TerminalObject( CapCategory( A ) ) - A. FormalDifferenceOfNormalizedObjects assumes that A and B are normalized
‣ MinuendAndSubtrahendInUnderlyingLattice( A ) | ( operation ) |
Returns: a pair of objects in a thin category
A pair in the underlying lattice representing the formal single difference A.
‣ DistinguishedSubtrahend( A ) | ( operation ) |
Returns: an object in a thin category
The output S should satisfy A.I - S = A. The standard method returns NormalizedDistinguishedSubtrahend( A ) if HasNormalizedDistinguishedSubtrahend( A ) = true or PreDistinguishedSubtrahend( A ) if HasPreDistinguishedSubtrahend( A ) = true. The remaining behavior is unspecified.
‣ IsMeetSemilatticeOfSingleDifferences( arg ) | ( filter ) |
Returns: true or false
The GAP category of a meet-semilattice of single differences.
‣ IsObjectInMeetSemilatticeOfSingleDifferences( object ) | ( filter ) |
Returns: true or false
The GAP category of objects in a meet-semilattice of differences.
‣ IsMorphismInMeetSemilatticeOfSingleDifferences( morphism ) | ( filter ) |
Returns: true or false
The GAP category of morphisms in a meet-semilattice of differences.
generated by GAPDoc2HTML