Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

13 The interval category
 13.1 Constructors
 13.2 Attributes
 13.3 GAP categories

13 The interval category

13.1 Constructors

13.1-1 CreateIntervalCategory
‣ CreateIntervalCategory( )( function )

Returns: a CAP category

Return the interval category on two objects.

13.1-2 IntervalCategory
‣ IntervalCategory( global variable )

The interval category on two objects.

The category of presheaves with values in the interval category of the boolean algebra 2^1 has 3 distinct objects. This is the free distributive lattice generated by a discrete category with one object.

gap> LoadPackage( "FunctorCategories", false, ">= 2024.11-03" );
true
gap> IntervalCategory;
IntervalCategory
gap> Display( IntervalCategory );
A CAP category with name IntervalCategory:

21 primitive operations were used to derive 336 operations for this category
 which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsFiniteCategory
* IsEquippedWithHomomorphismStructure
* IsBooleanAlgebra
gap> SetOfObjects( IntervalCategory );
[ <(⊥)>, <(⊤)> ]
gap> SetOfGeneratingMorphisms( IntervalCategory );
[ (⊥)-[(⇒)]->(⊤) ]
gap> PSh := PreSheaves( IntervalCategory );
PreSheaves( IntervalCategory, IntervalCategory )
gap> Display( PSh );
A CAP category with name PreSheaves( IntervalCategory, IntervalCategory ):

25 primitive operations were used to derive 293 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsFiniteCategory
* IsEquippedWithHomomorphismStructure
* IsHeytingAlgebra
and not yet algorithmically
* IsBiHeytingAlgebra
gap> Y := YonedaEmbeddingOfSourceCategory( PSh );
Yoneda embedding functor
gap> t := Y( TerminalObject( IntervalCategory ) );
<A projective object in PreSheaves( IntervalCategory, IntervalCategory )>
gap> IsTerminal( t );
true
gap> Display( t );
Image of <(⊥)>:
<(⊤)>

Image of <(⊤)>:
<(⊤)>

Image of (⊥)-[(⇒)]->(⊤):
(⊤)-[(⊤)]->(⊤)

An object in PreSheaves( IntervalCategory, IntervalCategory )
given by the above data
gap> f := Y( InitialObject( IntervalCategory ) );
<A projective object in PreSheaves( IntervalCategory, IntervalCategory )>
gap> IsInitial( f );
false
gap> Display( f );
Image of <(⊥)>:
<(⊤)>

Image of <(⊤)>:
<(⊥)>

Image of (⊥)-[(⇒)]->(⊤):
(⊥)-[(⇒)]->(⊤)

An object in PreSheaves( IntervalCategory, IntervalCategory )
given by the above data
gap> i := InitialObject( PSh );
<An object in PreSheaves( IntervalCategory, IntervalCategory )>
gap> Display( i );
Image of <(⊥)>:
<(⊥)>

Image of <(⊤)>:
<(⊥)>

Image of (⊥)-[(⇒)]->(⊤):
(⊥)-[(⊥)]->(⊥)

An object in PreSheaves( IntervalCategory, IntervalCategory )
given by the above data
gap> gens := SetOfGeneratingMorphisms( PSh );
[ <A morphism in PreSheaves( IntervalCategory, IntervalCategory )>,
  <A morphism in PreSheaves( IntervalCategory, IntervalCategory )> ]
gap> Display( gens[1] );
Image of <(⊥)>:
(⊥)-[(⇒)]->(⊤)

Image of <(⊤)>:
(⊥)-[(⊥)]->(⊥)

A morphism in PreSheaves( IntervalCategory, IntervalCategory )
given by the above data
gap> Display( gens[2] );
Image of <(⊥)>:
(⊤)-[(⊤)]->(⊤)

Image of <(⊤)>:
(⊥)-[(⇒)]->(⊤)

A morphism in PreSheaves( IntervalCategory, IntervalCategory )
given by the above data
gap> coYgens := List( gens, CoYonedaLemmaOnMorphisms );
[ <A morphism in
   FiniteColimitCompletionWithStrictCoproducts( IntervalCategory )>,
  <A morphism in
   FiniteColimitCompletionWithStrictCoproducts( IntervalCategory )> ]
gap> List( coYgens, IsWellDefined );
[ true, true ]

13.2 Attributes

13.2-1 Length
‣ Length( a )( attribute )

Returns: an integer

The truth value of the object a in the interval category. It is either \(0\) for false or \(1\) for true.

13.3 GAP categories

13.3-1 IsIntervalCategory
‣ IsIntervalCategory( arg )( filter )

Returns: true or false

The GAP category of an interval category.

The GAP category of cells in an interval category.

13.3-2 IsCellInIntervalCategory
‣ IsCellInIntervalCategory( arg )( filter )

Returns: true or false

13.3-3 IsObjectInIntervalCategory
‣ IsObjectInIntervalCategory( arg )( filter )

Returns: true or false

The GAP category of objects in an interval category.

13.3-4 IsMorphismInIntervalCategory
‣ IsMorphismInIntervalCategory( arg )( filter )

Returns: true or false

The GAP category of morphisms in an interval category.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind

generated by GAPDoc2HTML