‣ CreateIntervalCategory ( ) | ( function ) |
Returns: a CAP category
Return the interval category on two objects.
‣ IntervalCategory | ( global variable ) |
The interval category on two objects.
The category of presheaves with values in the interval category of the boolean algebra 2^1 has 3 distinct objects. This is the free distributive lattice generated by a discrete category with one object.
gap> LoadPackage( "FunctorCategories", false, ">= 2024.11-03" ); true gap> IntervalCategory; IntervalCategory gap> Display( IntervalCategory ); A CAP category with name IntervalCategory: 21 primitive operations were used to derive 336 operations for this category which algorithmically * IsCategoryWithDecidableColifts * IsCategoryWithDecidableLifts * IsFiniteCategory * IsEquippedWithHomomorphismStructure * IsBooleanAlgebra gap> SetOfObjects( IntervalCategory ); [ <(⊥)>, <(⊤)> ] gap> SetOfGeneratingMorphisms( IntervalCategory ); [ (⊥)-[(⇒)]->(⊤) ] gap> PSh := PreSheaves( IntervalCategory ); PreSheaves( IntervalCategory, IntervalCategory ) gap> Display( PSh ); A CAP category with name PreSheaves( IntervalCategory, IntervalCategory ): 25 primitive operations were used to derive 293 operations for this category which algorithmically * IsCategoryWithDecidableColifts * IsCategoryWithDecidableLifts * IsFiniteCategory * IsEquippedWithHomomorphismStructure * IsHeytingAlgebra and not yet algorithmically * IsBiHeytingAlgebra gap> Y := YonedaEmbeddingOfSourceCategory( PSh ); Yoneda embedding functor gap> t := Y( TerminalObject( IntervalCategory ) ); <A projective object in PreSheaves( IntervalCategory, IntervalCategory )> gap> IsTerminal( t ); true gap> Display( t ); Image of <(⊥)>: <(⊤)> Image of <(⊤)>: <(⊤)> Image of (⊥)-[(⇒)]->(⊤): (⊤)-[(⊤)]->(⊤) An object in PreSheaves( IntervalCategory, IntervalCategory ) given by the above data gap> f := Y( InitialObject( IntervalCategory ) ); <A projective object in PreSheaves( IntervalCategory, IntervalCategory )> gap> IsInitial( f ); false gap> Display( f ); Image of <(⊥)>: <(⊤)> Image of <(⊤)>: <(⊥)> Image of (⊥)-[(⇒)]->(⊤): (⊥)-[(⇒)]->(⊤) An object in PreSheaves( IntervalCategory, IntervalCategory ) given by the above data gap> i := InitialObject( PSh ); <An object in PreSheaves( IntervalCategory, IntervalCategory )> gap> Display( i ); Image of <(⊥)>: <(⊥)> Image of <(⊤)>: <(⊥)> Image of (⊥)-[(⇒)]->(⊤): (⊥)-[(⊥)]->(⊥) An object in PreSheaves( IntervalCategory, IntervalCategory ) given by the above data gap> gens := SetOfGeneratingMorphisms( PSh ); [ <A morphism in PreSheaves( IntervalCategory, IntervalCategory )>, <A morphism in PreSheaves( IntervalCategory, IntervalCategory )> ] gap> Display( gens[1] ); Image of <(⊥)>: (⊥)-[(⇒)]->(⊤) Image of <(⊤)>: (⊥)-[(⊥)]->(⊥) A morphism in PreSheaves( IntervalCategory, IntervalCategory ) given by the above data gap> Display( gens[2] ); Image of <(⊥)>: (⊤)-[(⊤)]->(⊤) Image of <(⊤)>: (⊥)-[(⇒)]->(⊤) A morphism in PreSheaves( IntervalCategory, IntervalCategory ) given by the above data gap> coYgens := List( gens, CoYonedaLemmaOnMorphisms ); [ <A morphism in FiniteColimitCompletionWithStrictCoproducts( IntervalCategory )>, <A morphism in FiniteColimitCompletionWithStrictCoproducts( IntervalCategory )> ] gap> List( coYgens, IsWellDefined ); [ true, true ]
‣ Length ( a ) | ( attribute ) |
Returns: an integer
The truth value of the object a in the interval category. It is either \(0\) for false or \(1\) for true.
‣ IsIntervalCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of an interval category.
The GAP category of cells in an interval category.
‣ IsCellInIntervalCategory ( arg ) | ( filter ) |
Returns: true
or false
‣ IsObjectInIntervalCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of objects in an interval category.
‣ IsMorphismInIntervalCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in an interval category.
generated by GAPDoc2HTML