Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Prosets (preordered sets)
 1.1 Info Class
 1.2 Constructors
 1.3 Properties
 1.4 Operations
 1.5 GAP categories
 1.6 Add-methods

1 Prosets (preordered sets)

1.1 Info Class

1.1-1 InfoLocales
‣ InfoLocales( info class )

1.2 Constructors

1.2-1 UniqueMorphism
‣ UniqueMorphism( A, B )( operation )

Returns: a CAP morphism

Construct the unique morphism with source A and target B.

1.3 Properties

1.3-1 IsThinCategory
‣ IsThinCategory( C )( property )

Returns: true or false

The property of C being a thin CAP category.

1.3-2 IsDiscreteCategory
‣ IsDiscreteCategory( C )( property )

Returns: true or false

The property of C being a discrete CAP category, i.e., equivalent to a category in which any morphism is an identity.

1.3-3 IsMonoidalProset
‣ IsMonoidalProset( C )( property )

Returns: true or false

The property of C being a monoidal thin category.

1.3-4 IsClosedMonoidalProset
‣ IsClosedMonoidalProset( C )( property )

Returns: true or false

The property of C being a closed monoidal thin category.

1.3-5 IsCoclosedMonoidalProset
‣ IsCoclosedMonoidalProset( C )( property )

Returns: true or false

The property of C being a coclosed monoidal thin category.

1.3-6 IsSymmetricMonoidalProset
‣ IsSymmetricMonoidalProset( C )( property )

Returns: true or false

The property of C being a symmetric monoidal thin category.

1.3-7 IsSymmetricClosedMonoidalProset
‣ IsSymmetricClosedMonoidalProset( C )( property )

Returns: true or false

The property of C being a symmetric closed monoidal thin category.

1.3-8 IsSymmetricCoclosedMonoidalProset
‣ IsSymmetricCoclosedMonoidalProset( C )( property )

Returns: true or false

The property of C being a symmetric coclosed monoidal thin category.

1.4 Operations

1.4-1 AreIsomorphicForObjectsIfIsHomSetInhabited
‣ AreIsomorphicForObjectsIfIsHomSetInhabited( A, B )( operation )

Returns: true or false

Check if A is isomorphic to B under the assumption that there exists a morphism from A to B, i.e., if A is known to be less or equal to B w.r.t. the preorder.

1.5 GAP categories

1.5-1 IsCategoryWithoutMorphismData
‣ IsCategoryWithoutMorphismData( object )( filter )

Returns: true or false

The GAP category of categories with morphisms without a morphism datum.

1.5-2 IsObjectInThinCategory
‣ IsObjectInThinCategory( object )( filter )

Returns: true or false

The GAP category of objects in a thin CAP category.

1.5-3 IsMorphismInThinCategory
‣ IsMorphismInThinCategory( morphism )( filter )

Returns: true or false

The GAP category of morphisms in a thin CAP category.

1.6 Add-methods

1.6-1 AddAreIsomorphicForObjectsIfIsHomSetInhabited
‣ AddAreIsomorphicForObjectsIfIsHomSetInhabited( C, F )( operation )
‣ AddAreIsomorphicForObjectsIfIsHomSetInhabited( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation AreIsomorphicForObjectsIfIsHomSetInhabited. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3 ) \mapsto \mathtt{AreIsomorphicForObjectsIfIsHomSetInhabited}(arg2, arg3)\).

1.6-2 AddUniqueMorphism
‣ AddUniqueMorphism( C, F )( operation )
‣ AddUniqueMorphism( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniqueMorphism. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( A, B ) \mapsto \mathtt{UniqueMorphism}(A, B)\).

Prosets are thin categories, i.e., each Hom-set is either a singleton or empty.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind

generated by GAPDoc2HTML