‣ IsCoHeytingAlgebroid ( C ) | ( property ) |
Returns: true
or false
The property of C being a co-Heyting algebroid.
‣ IsCoHeytingAlgebra ( C ) | ( property ) |
Returns: true
or false
The property of C being a co-Heyting algebra.
‣ ConegationOnObjects ( a ) | ( attribute ) |
Returns: an object
The argument is an object a. The output is its co-negated object \ulcorner a.
‣ ConegationOnMorphisms ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \ulcorner b, \ulcorner a ).
The argument is a morphism \alpha: a \rightarrow b. The output is its negated morphism \ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a.
‣ ConegationOnMorphismsWithGivenConegations ( s, alpha, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \ulcorner b, \ulcorner a ).
The argument is an object s = \ulcorner b, a morphism \alpha: a \rightarrow b, and an object r = \ulcorner a. The output is the negated morphism \ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a.
‣ MorphismFromDoubleConegation ( a ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\ulcorner\ulcorner a, a).
The argument is an object a. The output is the morphism from the double conegation \ulcorner\ulcorner a \rightarrow a.
‣ MorphismFromDoubleConegationWithGivenDoubleConegation ( a, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\ulcorner\ulcorner a, a).
The arguments are an object a, and an object r = \ulcorner\ulcorner a. The output is the morphism from the double conegation \ulcorner\ulcorner a \rightarrow a.
‣ StableInternalCoHom ( V, W ) | ( operation ) |
Returns: a CAP object
Return the stable internal coHom: \mathrm{\underline{coHom}}(\mathrm{\underline{coHom}}(...\mathrm{\underline{coHom}}(V,W)...,W),W).
‣ AddConegationOnMorphisms ( C, F ) | ( operation ) |
‣ AddConegationOnMorphisms ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ConegationOnMorphisms
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( alpha ) \mapsto \mathtt{ConegationOnMorphisms}(alpha).
‣ AddConegationOnMorphismsWithGivenConegations ( C, F ) | ( operation ) |
‣ AddConegationOnMorphismsWithGivenConegations ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ConegationOnMorphismsWithGivenConegations
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( s, alpha, r ) \mapsto \mathtt{ConegationOnMorphismsWithGivenConegations}(s, alpha, r).
‣ AddConegationOnObjects ( C, F ) | ( operation ) |
‣ AddConegationOnObjects ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ConegationOnObjects
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( arg2 ) \mapsto \mathtt{ConegationOnObjects}(arg2).
‣ AddMorphismFromDoubleConegation ( C, F ) | ( operation ) |
‣ AddMorphismFromDoubleConegation ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromDoubleConegation
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a ) \mapsto \mathtt{MorphismFromDoubleConegation}(a).
‣ AddMorphismFromDoubleConegationWithGivenDoubleConegation ( C, F ) | ( operation ) |
‣ AddMorphismFromDoubleConegationWithGivenDoubleConegation ( C, F, weight ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromDoubleConegationWithGivenDoubleConegation
. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a, s ) \mapsto \mathtt{MorphismFromDoubleConegationWithGivenDoubleConegation}(a, s).
generated by GAPDoc2HTML