‣ MeetSemilatticeOfMultipleDifferences( L ) | ( attribute ) | 
Returns: a CAP category
Construct the meet-semilattice of multiple differences from the lattice L.
‣ AsMultipleDifference( D1, D2, ... ) | ( function ) | 
Returns: an object in a CAP category
If D1=A1-B1, D2=A2-B2, ..., then the output is DirectProduct(A1,A2,...) - Coproduct(B1,B2,...).
‣ AsSingleDifference( A ) | ( attribute ) | 
‣ ListOfSingleDifferences( A ) | ( operation ) | 
Returns: a list of CAP morphism
A list of formal single differences in the underlying lattice representing the formal multiple difference A.
11.3-2 \[\]‣ \[\]( arg1, arg2 ) | ( operation ) | 
‣ IsMeetSemilatticeOfMultipleDifferences( arg ) | ( filter ) | 
Returns: true or false
The GAP category of a meet-semilattice of multiple differences.
‣ IsObjectInMeetSemilatticeOfMultipleDifferences( object ) | ( filter ) | 
Returns: true or false
The GAP category of objects in a meet-semilattice of multiple differences.
‣ IsMorphismInMeetSemilatticeOfMultipleDifferences( morphism ) | ( filter ) | 
Returns: true or false
The GAP category of morphisms in a meet-semilattice of multiple differences.
generated by GAPDoc2HTML