Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

6 Boolean algebras
 6.1 Properties
 6.2 Operations
 6.3 Add-methods

6 Boolean algebras

6.1 Properties

6.1-1 IsBiHeytingAlgebroid
‣ IsBiHeytingAlgebroid( C )( property )

Returns: true or false

The property of C being a bi-Heyting algebroid.

6.1-2 IsBiHeytingAlgebra
‣ IsBiHeytingAlgebra( C )( property )

Returns: true or false

The property of C being a bi-Heyting algebra.

6.1-3 IsBooleanAlgebroid
‣ IsBooleanAlgebroid( C )( property )

Returns: true or false

The property of C being a Boolean algebroid.

6.1-4 IsBooleanAlgebra
‣ IsBooleanAlgebra( C )( property )

Returns: true or false

The property of C being a Boolean algebra.

6.2 Operations

6.2-1 MorphismFromDoubleNegation
‣ MorphismFromDoubleNegation( a )( attribute )

Returns: a morphism in \mathrm{Hom}(\neg\neg a, a).

The argument is an object a. The output is the inverse \neg\neg a \rightarrow a of the morphism to the double negation.

6.2-2 MorphismFromDoubleNegationWithGivenDoubleNegation
‣ MorphismFromDoubleNegationWithGivenDoubleNegation( a, s )( operation )

Returns: a morphism in \mathrm{Hom}(\neg\neg a, a).

The argument is an object a, and an object s = \neg\neg a. The output is the inverse \neg\neg a \rightarrow a of the morphism to the double negation.

6.2-3 MorphismToDoubleConegation
‣ MorphismToDoubleConegation( a )( attribute )

Returns: a morphism in \mathrm{Hom}(a, \ulcorner\ulcorner a).

The argument is an object a. The output is the inverse a \rightarrow \ulcorner\ulcorner a of the morphism from the double conegation.

6.2-4 MorphismToDoubleConegationWithGivenDoubleConegation
‣ MorphismToDoubleConegationWithGivenDoubleConegation( a, s )( operation )

Returns: a morphism in \mathrm{Hom}(a, \ulcorner\ulcorner a).

The argument is an object a, and an object r = \ulcorner\ulcorner a. The output is the inverse a \rightarrow \ulcorner\ulcorner a of the morphism from the double conegation.

6.3 Add-methods

6.3-1 AddMorphismFromDoubleNegation
‣ AddMorphismFromDoubleNegation( C, F )( operation )
‣ AddMorphismFromDoubleNegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromDoubleNegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a ) \mapsto \mathtt{MorphismFromDoubleNegation}(a).

6.3-2 AddMorphismFromDoubleNegationWithGivenDoubleNegation
‣ AddMorphismFromDoubleNegationWithGivenDoubleNegation( C, F )( operation )
‣ AddMorphismFromDoubleNegationWithGivenDoubleNegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromDoubleNegationWithGivenDoubleNegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a, s ) \mapsto \mathtt{MorphismFromDoubleNegationWithGivenDoubleNegation}(a, s).

6.3-3 AddMorphismToDoubleConegation
‣ AddMorphismToDoubleConegation( C, F )( operation )
‣ AddMorphismToDoubleConegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismToDoubleConegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a ) \mapsto \mathtt{MorphismToDoubleConegation}(a).

6.3-4 AddMorphismToDoubleConegationWithGivenDoubleConegation
‣ AddMorphismToDoubleConegationWithGivenDoubleConegation( C, F )( operation )
‣ AddMorphismToDoubleConegationWithGivenDoubleConegation( C, F, weight )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismToDoubleConegationWithGivenDoubleConegation. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). F: ( a, r ) \mapsto \mathtt{MorphismToDoubleConegationWithGivenDoubleConegation}(a, r).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind

generated by GAPDoc2HTML