Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

18 Example on tensor products in Freyd categories
 18.1 Tensor products for categories of rows
 18.2 Tensor products for categories of columns

18 Example on tensor products in Freyd categories

18.1 Tensor products for categories of rows

gap> R := HomalgFieldOfRationalsInSingular() * "a,b,c,d,e,f,g,h,i,j";;
gap> C := CategoryOfRows( R );;
gap> T := TensorUnit( C );;
gap> IsWellDefined( T );
true

We test the naturality of the braiding.

gap> R2 := DirectSum( T, T );;
gap> R3 := DirectSum( T, R2 );;
gap> R4 := DirectSum( R2, R2 );;
gap> alpha := CategoryOfRowsMorphism( T, HomalgMatrix( "[ a, b, c, d ]", 1, 4, R ), R4 );;
gap> beta := CategoryOfRowsMorphism( R2, HomalgMatrix( "[ e, f, g, h, i, j ]", 2, 3, R ), R3 );;
gap> IsCongruentForMorphisms(
>     PreCompose( Braiding( T, R2 ), TensorProductOnMorphisms( beta, alpha ) ),
>     PreCompose( TensorProductOnMorphisms( alpha, beta ), Braiding( R4, R3 ) )
> );
true

We compute the torsion part of a f.p. module with the help of the induced tensor structure on the Freyd category.

gap> M := FreydCategoryObject( alpha );;
gap> mu := MorphismToBidual( M );;
gap> co := CoastrictionToImage( mu );;
gap> IsIsomorphism( co );
true

18.2 Tensor products for categories of columns

gap> R := HomalgFieldOfRationalsInSingular() * "a,b,c,d,e,f,g,h,i,j";;
gap> C := CategoryOfColumns( R );;
gap> T := TensorUnit( C );;
gap> IsWellDefined( T );
true

We test the naturality of the braiding.

gap> R2 := DirectSum( T, T );;
gap> R3 := DirectSum( T, R2 );;
gap> R4 := DirectSum( R2, R2 );;
gap> alpha := CategoryOfColumnsMorphism( T, HomalgMatrix( "[ a, b, c, d ]", 4, 1, R ), R4 );;
gap> beta := CategoryOfColumnsMorphism( R2, HomalgMatrix( "[ e, f, g, h, i, j ]", 3, 2, R ), R3 );;
gap> IsCongruentForMorphisms(
>     PreCompose( Braiding( T, R2 ), TensorProductOnMorphisms( beta, alpha ) ),
>     PreCompose( TensorProductOnMorphisms( alpha, beta ), Braiding( R4, R3 ) )
> );
true

We compute the torsion part of a f.p. module with the help of the induced tensor structure on the Freyd category.

gap> M := FreydCategoryObject( alpha );;
gap> mu := MorphismToBidual( M );;
gap> co := CoastrictionToImage( mu );;
gap> IsIsomorphism( co );
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind

generated by GAPDoc2HTML