gap> R := HomalgRingOfIntegers();; gap> rows := CategoryOfRows( R );; gap> adelman := AdelmanCategory( rows );; gap> obj1 := CategoryOfRowsObject( 1, rows );; gap> obj2 := CategoryOfRowsObject( 2, rows );; gap> id := IdentityMorphism( obj2 );; gap> alpha := CategoryOfRowsMorphism( obj1, HomalgMatrix( [ [ 1, 2 ] ], 1, 2, R ), obj2 );; gap> beta := CategoryOfRowsMorphism( obj2, HomalgMatrix( [ [ 1, 2 ], [ 3, 4 ] ], 2, 2, R ), obj2 );; gap> gamma := CategoryOfRowsMorphism( obj2, HomalgMatrix( [ [ 1, 3 ], [ 3, 4 ] ], 2, 2, R ), obj2 );; gap> obj1_a := AsAdelmanCategoryObject( obj1 );; gap> obj2_a := AsAdelmanCategoryObject( obj2 );; gap> m := AsAdelmanCategoryMorphism( beta );; gap> n := AsAdelmanCategoryMorphism( gamma );; gap> IsWellDefined( m ); true gap> # backwards compatibility > IsIdenticalObj( MorphismDatum( m ), beta ); true gap> IsCongruentForMorphisms( PreCompose( m, n ), PreCompose( n, m ) ); false gap> IsCongruentForMorphisms( SubtractionForMorphisms( m, m ), ZeroMorphism( obj2_a, obj2_a ) ); true gap> IsCongruentForMorphisms( ZeroObjectFunctorial( adelman ), > PreCompose( UniversalMorphismFromZeroObject( obj1_a), UniversalMorphismIntoZeroObject( obj1_a ) ) > ); true gap> d := [ obj1_a, obj2_a ];; gap> pi1 := ProjectionInFactorOfDirectSum( d, 1 );; gap> pi2 := ProjectionInFactorOfDirectSum( d, 2 );; gap> id := IdentityMorphism( DirectSum( d ) );; gap> iota1 := InjectionOfCofactorOfDirectSum( d, 1 );; gap> iota2 := InjectionOfCofactorOfDirectSum( d, 2 );; gap> IsCongruentForMorphisms( PreCompose( pi1, iota1 ) + PreCompose( pi2, iota2 ), id ); true gap> IsCongruentForMorphisms( UniversalMorphismIntoDirectSum( d, [ pi1, pi2 ] ), id ); true gap> IsCongruentForMorphisms( UniversalMorphismFromDirectSum( d, [ iota1, iota2 ] ), id ); true gap> c := CokernelProjection( m );; gap> c2 := CokernelProjection( c );; gap> IsCongruentForMorphisms( c2, ZeroMorphism( Source( c2 ), Range( c2 ) ) ); true gap> IsWellDefined( CokernelProjection( m ) ); true gap> IsCongruentForMorphisms( CokernelColift( m, CokernelProjection( m ) ), IdentityMorphism( CokernelObject( m ) ) ); true gap> k := KernelEmbedding( c );; gap> IsZeroForMorphisms( PreCompose( k, c ) ); true gap> IsCongruentForMorphisms( KernelLift( m, KernelEmbedding( m ) ), IdentityMorphism( KernelObject( m ) ) ); true
gap> R := HomalgRingOfIntegers();; gap> cols := CategoryOfColumns( R );; gap> adelman := AdelmanCategory( cols );; gap> obj1 := CategoryOfColumnsObject( 1, cols );; gap> obj2 := CategoryOfColumnsObject( 2, cols );; gap> id := IdentityMorphism( obj2 );; gap> alpha := CategoryOfColumnsMorphism( obj1, HomalgMatrix( [ [ 1 ], [ 2 ] ], 2, 1, R ), obj2 );; gap> beta := CategoryOfColumnsMorphism( obj2, HomalgMatrix( [ [ 1, 3 ], [ 2, 4 ] ], 2, 2, R ), obj2 );; gap> gamma := CategoryOfColumnsMorphism( obj2, HomalgMatrix( [ [ 1, 3 ], [ 3, 4 ] ], 2, 2, R ), obj2 );; gap> obj1_a := AsAdelmanCategoryObject( obj1 );; gap> obj2_a := AsAdelmanCategoryObject( obj2 );; gap> m := AsAdelmanCategoryMorphism( beta );; gap> n := AsAdelmanCategoryMorphism( gamma );; gap> IsWellDefined( m ); true gap> IsCongruentForMorphisms( PreCompose( m, n ), PreCompose( n, m ) ); false gap> IsCongruentForMorphisms( SubtractionForMorphisms( m, m ), ZeroMorphism( obj2_a, obj2_a ) ); true gap> IsCongruentForMorphisms( ZeroObjectFunctorial( adelman ), > PreCompose( UniversalMorphismFromZeroObject( obj1_a), UniversalMorphismIntoZeroObject( obj1_a ) ) > ); true gap> d := [ obj1_a, obj2_a ];; gap> pi1 := ProjectionInFactorOfDirectSum( d, 1 );; gap> pi2 := ProjectionInFactorOfDirectSum( d, 2 );; gap> id := IdentityMorphism( DirectSum( d ) );; gap> iota1 := InjectionOfCofactorOfDirectSum( d, 1 );; gap> iota2 := InjectionOfCofactorOfDirectSum( d, 2 );; gap> IsCongruentForMorphisms( PreCompose( pi1, iota1 ) + PreCompose( pi2, iota2 ), id ); true gap> IsCongruentForMorphisms( UniversalMorphismIntoDirectSum( d, [ pi1, pi2 ] ), id ); true gap> IsCongruentForMorphisms( UniversalMorphismFromDirectSum( d, [ iota1, iota2 ] ), id ); true gap> c := CokernelProjection( m );; gap> c2 := CokernelProjection( c );; gap> IsCongruentForMorphisms( c2, ZeroMorphism( Source( c2 ), Range( c2 ) ) ); true gap> IsWellDefined( CokernelProjection( m ) ); true gap> IsCongruentForMorphisms( CokernelColift( m, CokernelProjection( m ) ), IdentityMorphism( CokernelObject( m ) ) ); true gap> k := KernelEmbedding( c );; gap> IsZeroForMorphisms( PreCompose( k, c ) ); true gap> IsCongruentForMorphisms( KernelLift( m, KernelEmbedding( m ) ), IdentityMorphism( KernelObject( m ) ) ); true
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> LoadPackage( "RingsForHomalg", false ); true gap> R := HomalgRingOfIntegers();; gap> cat := CategoryOfRows( R );; gap> obj1 := CategoryOfRowsObject( 1, cat );; gap> obj2 := CategoryOfRowsObject( 2, cat );; gap> IsIsomorphicForObjects( obj1, obj2 ); false gap> IsIsomorphicForObjects( obj2, obj2 ); true gap> IsIsomorphism( SomeIsomorphismBetweenObjects( obj2, obj2 ) ); true gap> id := IdentityMorphism( obj2 );; gap> alpha := CategoryOfRowsMorphism( obj1, HomalgMatrix( [ [ 1, 2 ] ], 1, 2, R ), obj2 );; gap> beta := CategoryOfRowsMorphism( obj2, HomalgMatrix( [ [ 1, 2 ], [ 3, 4 ] ], 2, 2, R ), obj2 );; gap> comp := PreCompose( alpha, beta );; gap> IsZeroForMorphisms( comp );; gap> zero := ZeroMorphism( obj1, obj2 );; gap> IsZeroForMorphisms( zero );; gap> ZeroObject( cat );; gap> UniversalMorphismIntoZeroObject( obj2 );; gap> UniversalMorphismFromZeroObject( obj1 );; gap> IsCongruentForMorphisms( > SumOfMorphisms( obj1, [ alpha, alpha, alpha ], obj2 ), > AdditionForMorphisms( alpha, AdditionForMorphisms( alpha, alpha ) ) > ); true gap> IsCongruentForMorphisms( > SumOfMorphisms( obj1, [ ], obj2 ), > ZeroMorphism( obj1, obj2 ) > ); true gap> DirectSum( obj1, obj2 );; gap> DirectSumFunctorial( [ alpha, beta, id ] );; gap> proj := ProjectionInFactorOfDirectSum( [ obj2, obj1, obj2 ], 2 );; gap> IsZeroForMorphisms( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 1 ) ); true gap> IsOne( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 3 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismFromCoproduct( proj, [ obj2, obj1, obj2 ], 1 ) ); true gap> IsOne( ComponentOfMorphismFromCoproduct( proj, [ obj2, obj1, obj2 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismFromCoproduct( proj, [ obj2, obj1, obj2 ], 3 ) ); true gap> UniversalMorphismIntoDirectSum( [ alpha, alpha, alpha ] );; gap> inj := InjectionOfCofactorOfDirectSum( [ obj2, obj2, obj1 ], 2 );; gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 1 ) ); true gap> IsOne( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 3 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectProduct( inj, [ obj2, obj2, obj1 ], 1 ) ); true gap> IsOne( ComponentOfMorphismIntoDirectProduct( inj, [ obj2, obj2, obj1 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectProduct( inj, [ obj2, obj2, obj1 ], 3 ) ); true gap> gamma := CategoryOfRowsMorphism( obj2, HomalgMatrix( [ [ 1, 1 ], [ 1, 1 ] ], 2, 2, R ), obj2 );; gap> IsColiftable( beta, gamma ); true gap> IsColiftable( gamma, beta ); false gap> ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, gamma );; gap> ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, ZeroMorphism( Range( gamma ), Range( gamma ) ) );; gap> lift_arg_1 := PreCompose( ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, gamma + gamma ), gamma );; gap> lift_arg_2 := gamma + gamma;; gap> IsLiftable( lift_arg_1, lift_arg_2 );; gap> Lift( lift_arg_1, lift_arg_2 );; gap> pi1 := ProjectionInFirstFactorOfWeakBiFiberProduct( alpha, beta );; gap> pi2 := ProjectionInSecondFactorOfWeakBiFiberProduct( alpha, beta );; gap> IsEqualForMorphisms( PreCompose( pi1, alpha ), PreCompose( pi2, beta ) );; gap> inj1 := InjectionOfFirstCofactorOfWeakBiPushout( gamma + gamma, gamma );; gap> inj2 := InjectionOfSecondCofactorOfWeakBiPushout( gamma + gamma, gamma );; gap> IsEqualForMorphisms( PreCompose( gamma + gamma, inj1 ), PreCompose( gamma, inj2 ) );; gap> WeakKernelLift( WeakCokernelProjection( gamma ), gamma );; gap> pi1 := InjectionOfFirstCofactorOfWeakBiPushout( alpha, alpha );; gap> pi2 := InjectionOfSecondCofactorOfWeakBiPushout( alpha, alpha );; gap> UniversalMorphismFromWeakBiPushout( alpha, alpha, pi1, pi2 );; gap> ## Freyd categories > freyd := FreydCategory( cat );; gap> IsAbelianCategory( freyd );; gap> obj_gamma := FreydCategoryObject( gamma );; gap> u := RandomMorphismWithFixedSource( obj_gamma, [ [5], [5] ] );; gap> IsWellDefined( u ) and IsEqualForObjects( Source(u), obj_gamma ); true gap> u := RandomMorphismWithFixedSource( obj_gamma, 5 );; gap> IsWellDefined( u ) and IsEqualForObjects( Source(u), obj_gamma ); true gap> u := RandomMorphismWithFixedRange( obj_gamma, [ [5], [5] ] );; gap> IsWellDefined( u ) and IsEqualForObjects( Range(u), obj_gamma ); true gap> u := RandomMorphismWithFixedRange( obj_gamma, 5 );; gap> IsWellDefined( u ) and IsEqualForObjects( Range(u), obj_gamma ); true gap> obj_delta := RandomObject( freyd, [[10],[10],[10]] );; gap> obj_delta := RandomObject( freyd, 10 );; gap> u := RandomMorphismWithFixedSourceAndRange( obj_gamma, obj_delta, [ 5 ] );; gap> IsWellDefined( u ); true gap> IsEqualForObjects( Source(u), obj_gamma ) and IsEqualForObjects( Range(u), obj_delta ); true gap> u := RandomMorphismWithFixedSourceAndRange( obj_gamma, obj_delta, 5 );; gap> IsWellDefined( u ); true gap> IsEqualForObjects( Source(u), obj_gamma ) and IsEqualForObjects( Range(u), obj_delta ); true gap> IsWellDefined( RandomMorphism( freyd, 5 ) ); true gap> IsWellDefined( RandomMorphism( freyd, [[[5],[5],[5]],[[5],[5],[5]],[1]] ) ); true gap> f := FreydCategoryMorphism( obj_gamma, gamma, obj_gamma );; gap> witness := MorphismWitness( f );; gap> g := FreydCategoryMorphism( obj_gamma, ZeroMorphism( obj2, obj2 ), obj_gamma );; gap> IsCongruentForMorphisms( f, g );; gap> c := PreCompose( f, f );; gap> s := g + g;; gap> a := CategoryOfRowsMorphism( obj1, HomalgMatrix( [ [ 2 ] ], 1, 1, R ), obj1 );; gap> Z2 := FreydCategoryObject( a );; gap> id := IdentityMorphism( Z2 );; gap> z := id + id + id;; gap> d := DirectSumFunctorial( [ z, z, z ] );; gap> pr2 := ProjectionInFactorOfDirectSum( [ Z2, Z2, Z2 ], 2 );; gap> pr3 := ProjectionInFactorOfDirectSum( [ Z2, Z2, Z2 ], 3 );; gap> UniversalMorphismIntoDirectSum( [ pr3, pr2 ] );; gap> inj1 := InjectionOfCofactorOfDirectSum( [ Z2, Z2, Z2 ], 1 );; gap> inj2 := InjectionOfCofactorOfDirectSum( [ Z2, Z2, Z2 ], 2 );; gap> UniversalMorphismFromDirectSum( [ inj2, inj1 ] );; gap> ZFree := obj1/freyd;; gap> id := IdentityMorphism( ZFree );; gap> z := id + id;; gap> CokernelProjection( z );; gap> CokernelColift( z, CokernelProjection( z ) );; gap> UniversalMorphismFromZeroObjectWithGivenZeroObject( obj_gamma, ZeroObject( freyd ) );; gap> MultiplyWithElementOfCommutativeRingForMorphisms( 2 / R, f );; gap> S := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> Rows_S := CategoryOfRows( S );; gap> S3 := CategoryOfRowsObject( 3, Rows_S );; gap> S1 := CategoryOfRowsObject( 1, Rows_S );; gap> mor := CategoryOfRowsMorphism( S3, HomalgMatrix( "[x,y,z]", 3, 1, S ), S1 );; gap> biased_w := CategoryOfRowsMorphism( S3, HomalgMatrix( "[x,0,0,0,x,0,0,0,x]", 3, 3, S ), S3 );; gap> biased_h := CategoryOfRowsMorphism( S3, HomalgMatrix( "[x*y, x*z, y^2]", 3, 3, S ), S3 );; gap> BiasedWeakFiberProduct( biased_h, biased_w );; gap> ProjectionOfBiasedWeakFiberProduct( biased_h, biased_w );; gap> IsCongruentForMorphisms( > PreCompose( UniversalMorphismIntoBiasedWeakFiberProduct( biased_h, biased_w, biased_h ), ProjectionOfBiasedWeakFiberProduct( biased_h, biased_w ) ), > biased_h > ); true gap> IsCongruentForMorphisms( > PreCompose( InjectionOfBiasedWeakPushout( biased_h, biased_w ), UniversalMorphismFromBiasedWeakPushout( biased_h, biased_w, biased_h )), > biased_h > ); true gap> k := FreydCategoryObject( mor );; gap> w := EpimorphismFromSomeProjectiveObjectForKernelObject( UniversalMorphismIntoZeroObject( k ) );; gap> k := KernelEmbedding( w );; gap> ColiftAlongEpimorphism( CokernelProjection( k ), CokernelProjection( k ) );; gap> ## Homomorphism structures > a := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( gamma );; gap> IsCongruentForMorphisms( InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( a ), Range( a ), InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( a ) ), a );; gap> a := ZeroObjectFunctorial( cat );; gap> IsCongruentForMorphisms( InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( a ), Range( a ), InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( a ) ), a );; gap> Z4 := FreydCategoryObject( AsCategoryOfRowsMorphism( HomalgMatrix( "[4]", 1, 1, R ), cat ) );; gap> Z3 := FreydCategoryObject( AsCategoryOfRowsMorphism( HomalgMatrix( "[3]", 1, 1, R ), cat ) );; gap> HomomorphismStructureOnObjects( Z4, Z2 );; gap> HomomorphismStructureOnObjects( Z4, Z4 );; gap> HomomorphismStructureOnObjects( Z2, Z4 );; gap> HomomorphismStructureOnObjects( Z3, Z4 );; gap> HomomorphismStructureOnMorphisms( IdentityMorphism( DirectSum( Z4, Z2, Z3 ) ), -IdentityMorphism( DirectSum( Z4, Z3 ) ) );; gap> ## Lifts > S2 := CategoryOfRowsObject( 2, Rows_S );; gap> S4 := CategoryOfRowsObject( 4, Rows_S );; gap> S1_freyd := AsFreydCategoryObject( S1 );; gap> S2_freyd := AsFreydCategoryObject( S2 );; gap> S3_freyd := AsFreydCategoryObject( S3 );; gap> S4_freyd := AsFreydCategoryObject( S4 );; gap> lift := FreydCategoryMorphism( S1_freyd, CategoryOfRowsMorphism( S1, HomalgMatrix( "[x]", 1, 1, S ), S1 ), S1_freyd );; gap> gamma := FreydCategoryMorphism( S1_freyd, CategoryOfRowsMorphism( S1, HomalgMatrix( "[y]", 1,1, S ), S1 ), S1_freyd );; gap> alpha := PreCompose( lift, gamma );; gap> IsLiftable( alpha, gamma ); true gap> Lift( alpha, gamma );; gap> IsColiftable( lift, alpha ); true gap> IsCongruentForMorphisms( PreCompose( lift, Colift( lift, alpha ) ), alpha ); true gap> lift := FreydCategoryMorphism( S2_freyd, CategoryOfRowsMorphism( S2, HomalgMatrix( "[x,y,z,x^2,1,z+1]", 2, 3, S ), S3 ), S3_freyd );; gap> gamma := FreydCategoryMorphism( S3_freyd, CategoryOfRowsMorphism( S3, HomalgMatrix( "[x,y,z,z+1, x^2,y^2,z^2,z^2+1, x^3,y^3,z^3,z^3+1]", 3,4, S ), S4 ), S4_freyd );; gap> alpha := PreCompose( lift, gamma );; gap> Lift( alpha, gamma );; gap> Colift( lift, alpha );; gap> IsCongruentForMorphisms( PreCompose( lift, Colift( lift, alpha ) ), alpha );; gap> interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( gamma );; gap> IsCongruentForMorphisms( gamma, > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( gamma ), Range( gamma ), interpretation ) );; gap> ## Opposite > HomomorphismStructureOnObjects( Opposite( Z4 ), Opposite( Z2 ) );; gap> HomomorphismStructureOnObjects( Z2, Z4 );; gap> interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( Opposite( gamma ) );; gap> IsCongruentForMorphisms( Opposite( gamma ), > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( Opposite( gamma ) ), Range( Opposite( gamma ) ), interpretation ) ); true
gap> R := HomalgRingOfIntegers();; gap> cat := CategoryOfColumns( R );; gap> obj1 := CategoryOfColumnsObject( 1, cat );; gap> obj2 := CategoryOfColumnsObject( 2, cat );; gap> id := IdentityMorphism( obj2 );; gap> alpha := CategoryOfColumnsMorphism( obj1, HomalgMatrix( [ [ 1 ], [ 2 ] ], 1, 2, R ), obj2 );; gap> beta := CategoryOfColumnsMorphism( obj2, HomalgMatrix( [ [ 1, 2 ], [ 3, 4 ] ], 2, 2, R ), obj2 );; gap> comp := PreCompose( alpha, beta );; gap> IsZeroForMorphisms( comp );; gap> zero := ZeroMorphism( obj1, obj2 );; gap> IsZeroForMorphisms( zero );; gap> ZeroObject( cat );; gap> UniversalMorphismIntoZeroObject( obj2 );; gap> UniversalMorphismFromZeroObject( obj1 );; gap> DirectSum( obj1, obj2 );; gap> DirectSumFunctorial( [ alpha, beta, id ] );; gap> proj := ProjectionInFactorOfDirectSum( [ obj2, obj1, obj2 ], 2 );; gap> IsZeroForMorphisms( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 1 ) ); true gap> IsOne( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismFromDirectSum( proj, [ obj2, obj1, obj2 ], 3 ) ); true gap> UniversalMorphismIntoDirectSum( [ alpha, alpha, alpha ] );; gap> inj := InjectionOfCofactorOfDirectSum( [ obj2, obj2, obj1 ], 2 );; gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 1 ) ); true gap> IsOne( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 2 ) ); true gap> IsZeroForMorphisms( ComponentOfMorphismIntoDirectSum( inj, [ obj2, obj2, obj1 ], 3 ) ); true gap> gamma := CategoryOfColumnsMorphism( obj2, HomalgMatrix( [ [ 1, 1 ], [ 1, 1 ] ], 2, 2, R ), obj2 );; gap> IsColiftable( beta, gamma ); false gap> IsColiftable( gamma, beta ); false gap> ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, gamma );; gap> ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, ZeroMorphism( Range( gamma ), Range( gamma ) ) );; gap> lift_arg_1 := PreCompose( ProjectionInFirstFactorOfWeakBiFiberProduct( gamma, gamma + gamma ), gamma );; gap> lift_arg_2 := gamma + gamma;; gap> IsLiftable( lift_arg_1, lift_arg_2 );; gap> Lift( lift_arg_1, lift_arg_2 );; gap> pi1 := ProjectionInFirstFactorOfWeakBiFiberProduct( alpha, beta );; gap> pi2 := ProjectionInSecondFactorOfWeakBiFiberProduct( alpha, beta );; gap> IsEqualForMorphisms( PreCompose( pi1, alpha ), PreCompose( pi2, beta ) );; gap> inj1 := InjectionOfFirstCofactorOfWeakBiPushout( gamma + gamma, gamma );; gap> inj2 := InjectionOfSecondCofactorOfWeakBiPushout( gamma + gamma, gamma );; gap> IsEqualForMorphisms( PreCompose( gamma + gamma, inj1 ), PreCompose( gamma, inj2 ) );; gap> WeakKernelLift( WeakCokernelProjection( gamma ), gamma );; gap> pi1 := InjectionOfFirstCofactorOfWeakBiPushout( alpha, alpha );; gap> pi2 := InjectionOfSecondCofactorOfWeakBiPushout( alpha, alpha );; gap> UniversalMorphismFromWeakBiPushout( alpha, alpha, pi1, pi2 );; gap> ## Freyd categories > freyd := FreydCategory( cat );; gap> IsAbelianCategory( freyd );; gap> obj_gamma := FreydCategoryObject( gamma );; gap> f := FreydCategoryMorphism( obj_gamma, gamma, obj_gamma );; gap> witness := MorphismWitness( f );; gap> g := FreydCategoryMorphism( obj_gamma, ZeroMorphism( obj2, obj2 ), obj_gamma );; gap> IsCongruentForMorphisms( f, g );; gap> c := PreCompose( f, f );; gap> s := g + g;; gap> a := CategoryOfColumnsMorphism( obj1, HomalgMatrix( [ [ 2 ] ], 1, 1, R ), obj1 );; gap> Z2 := FreydCategoryObject( a );; gap> id := IdentityMorphism( Z2 );; gap> z := id + id + id;; gap> d := DirectSumFunctorial( [ z, z, z ] );; gap> pr2 := ProjectionInFactorOfDirectSum( [ Z2, Z2, Z2 ], 2 );; gap> pr3 := ProjectionInFactorOfDirectSum( [ Z2, Z2, Z2 ], 3 );; gap> UniversalMorphismIntoDirectSum( [ pr3, pr2 ] );; gap> inj1 := InjectionOfCofactorOfDirectSum( [ Z2, Z2, Z2 ], 1 );; gap> inj2 := InjectionOfCofactorOfDirectSum( [ Z2, Z2, Z2 ], 2 );; gap> UniversalMorphismFromDirectSum( [ inj2, inj1 ] );; gap> ZFree := AsFreydCategoryObject( obj1 );; gap> id := IdentityMorphism( ZFree );; gap> z := id + id;; gap> CokernelProjection( z );; gap> CokernelColift( z, CokernelProjection( z ) );; gap> S := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> Cols_S := CategoryOfColumns( S );; gap> S3 := CategoryOfColumnsObject( 3, Cols_S );; gap> S1 := CategoryOfColumnsObject( 1, Cols_S );; gap> mor := CategoryOfColumnsMorphism( S3, HomalgMatrix( "[x,y,z]", 1, 3, S ), S1 );; gap> biased_w := CategoryOfColumnsMorphism( S3, HomalgMatrix( "[x,0,0,0,x,0,0,0,x]", 3, 3, S ), S3 );; gap> biased_h := CategoryOfColumnsMorphism( S3, HomalgMatrix( "[x*y, x*z, y^2]", 3, 3, S ), S3 );; gap> BiasedWeakFiberProduct( biased_h, biased_w );; gap> ProjectionOfBiasedWeakFiberProduct( biased_h, biased_w );; gap> IsCongruentForMorphisms( > PreCompose( UniversalMorphismIntoBiasedWeakFiberProduct( biased_h, biased_w, biased_h ), ProjectionOfBiasedWeakFiberProduct( biased_h, biased_w ) ), > biased_h > ); true gap> IsCongruentForMorphisms( > PreCompose( InjectionOfBiasedWeakPushout( biased_h, biased_w ), UniversalMorphismFromBiasedWeakPushout( biased_h, biased_w, biased_h )), > biased_h > ); true gap> k := FreydCategoryObject( mor );; gap> w := EpimorphismFromSomeProjectiveObjectForKernelObject( UniversalMorphismIntoZeroObject( k ) );; gap> k := KernelEmbedding( w );; gap> ColiftAlongEpimorphism( CokernelProjection( k ), CokernelProjection( k ) );; gap> ## Homomorphism structures > a := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( gamma );; gap> IsCongruentForMorphisms( InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( a ), Range( a ), InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( a ) ), a );; gap> a := ZeroObjectFunctorial( cat );; gap> IsCongruentForMorphisms( InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( a ), Range( a ), InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( a ) ), a );; gap> Z4 := FreydCategoryObject( AsCategoryOfColumnsMorphism( HomalgMatrix( "[4]", 1, 1, R ), cat ) );; gap> Z3 := FreydCategoryObject( AsCategoryOfColumnsMorphism( HomalgMatrix( "[3]", 1, 1, R ), cat ) );; gap> HomomorphismStructureOnObjects( Z4, Z2 );; gap> HomomorphismStructureOnObjects( Z4, Z4 );; gap> HomomorphismStructureOnObjects( Z2, Z4 );; gap> HomomorphismStructureOnObjects( Z3, Z4 );; gap> HomomorphismStructureOnMorphisms( IdentityMorphism( DirectSum( Z4, Z2, Z3 ) ), -IdentityMorphism( DirectSum( Z4, Z3 ) ) );; gap> ## Lifts > S2 := CategoryOfColumnsObject( 2, Cols_S );; gap> S4 := CategoryOfColumnsObject( 4, Cols_S );; gap> S1_freyd := AsFreydCategoryObject( S1 );; gap> S2_freyd := AsFreydCategoryObject( S2 );; gap> S3_freyd := AsFreydCategoryObject( S3 );; gap> S4_freyd := AsFreydCategoryObject( S4 );; gap> lift := FreydCategoryMorphism( S1_freyd, CategoryOfColumnsMorphism( S1, HomalgMatrix( "[x]", 1, 1, S ), S1 ), S1_freyd );; gap> gamma := FreydCategoryMorphism( S1_freyd, CategoryOfColumnsMorphism( S1, HomalgMatrix( "[y]", 1,1, S ), S1 ), S1_freyd );; gap> alpha := PreCompose( lift, gamma );; gap> Lift( alpha, gamma );; gap> Colift( lift, alpha );; gap> IsCongruentForMorphisms( PreCompose( lift, Colift( lift, alpha ) ), alpha );; gap> lift := FreydCategoryMorphism( S2_freyd, CategoryOfColumnsMorphism( S2, HomalgMatrix( "[x,y,z,x^2,1,z+1]", 3, 2, S ), S3 ), S3_freyd );; gap> gamma := FreydCategoryMorphism( S3_freyd, CategoryOfColumnsMorphism( S3, HomalgMatrix( "[x,y,z,z+1, x^2,y^2,z^2,z^2+1, x^3,y^3,z^3,z^3+1]", 4,3, S ), S4 ), S4_freyd );; gap> alpha := PreCompose( lift, gamma );; gap> Lift( alpha, gamma );; gap> Colift( lift, alpha );; gap> IsCongruentForMorphisms( PreCompose( lift, Colift( lift, alpha ) ), alpha );; gap> interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( gamma );; gap> IsCongruentForMorphisms( gamma, > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( gamma ), Range( gamma ), interpretation ) );; gap> ## Opposite > HomomorphismStructureOnObjects( Opposite( Z4 ), Opposite( Z2 ) );; gap> HomomorphismStructureOnObjects( Z2, Z4 );; gap> interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( Opposite( gamma ) );; gap> IsCongruentForMorphisms( Opposite( gamma ), > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( Opposite( gamma ) ), Range( Opposite( gamma ) ), interpretation ) ); true
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> ZZZ := HomalgRingOfIntegers( );; gap> rows := CategoryOfRows( ZZZ );; gap> co_freyd := CoFreydCategory( rows ); CoFreyd( Rows( Z ) ) gap> rows_obj := CategoryOfRowsObject( rows, 1 );; # ZZZ^1 gap> co_freyd_obj := AsCoFreydCategoryObject( rows_obj );; # ZZZ^1 -> 0 gap> rows_mor := CategoryOfRowsMorphism( rows, rows_obj, HomalgMatrix( [ 2 ], 1, 1, ZZZ ), rows_obj );; # ZZZ^1 --2-> ZZZ^1 gap> co_freyd_mor := CoFreydCategoryMorphism( co_freyd_obj, rows_mor, co_freyd_obj );; gap> IsWellDefined( co_freyd_mor ); true gap> Display( KernelObject( co_freyd_mor ) ); -------------------------------- CoRelation morphism: -------------------------------- Source: A row module over Z of rank 1 Matrix: [ [ 2 ] ] Range: A row module over Z of rank 1 A morphism in Rows( Z ) -------------------------------- General description: -------------------------------- An object in CoFreyd( Rows( Z ) ) gap> Display( UnderlyingMorphism( KernelEmbedding( co_freyd_mor ) ) ); Source: A row module over Z of rank 1 Matrix: [ [ 1 ] ] Range: A row module over Z of rank 1 An identity morphism in Rows( Z ) gap> Display( CokernelObject( co_freyd_mor ) ); -------------------------------- CoRelation morphism: -------------------------------- Source: A row module over Z of rank 0 Matrix: (an empty 0 x 0 matrix) Range: A row module over Z of rank 0 A morphism in Rows( Z ) -------------------------------- General description: -------------------------------- An object in CoFreyd( Rows( Z ) ) gap> Display( UnderlyingMorphism( CokernelProjection( co_freyd_mor ) ) ); Source: A row module over Z of rank 1 Matrix: (an empty 1 x 0 matrix) Range: A row module over Z of rank 0 A morphism in Rows( Z )
gap> R := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> RowsR := CategoryOfRows( R );; gap> m := AsCategoryOfRowsMorphism( > HomalgMatrix( "[[x],[y],[z]]", 3, 1, R ), RowsR > );; gap> mu := AsCokernelImageClosureMorphism( m );; gap> C := CokernelObject( mu );; gap> C2 := AsFinitelyPresentedCokernelImageClosureObject( m );; gap> IsEqualForObjects( C, C2 ); true gap> n := AsCategoryOfRowsMorphism( > HomalgMatrix( "[[x,y],[y^2,z]]", 2, 2, R ), RowsR > );; gap> nu := AsCokernelImageClosureMorphism( n );; gap> nu2 := PreCompose( nu, nu );; gap> IsWellDefined( nu2 ); true gap> IsCongruentForMorphisms( nu, nu2 ); false gap> nu + nu;; gap> nu2 - nu;; gap> cat := CapCategory( nu );; gap> ZeroObject( cat );; gap> ZeroMorphism( Source( nu ), Source( mu ) );; gap> UniversalMorphismIntoZeroObject( Source( nu ) );; gap> UniversalMorphismFromZeroObject( Source( nu ) );; gap> S := Source( mu );; gap> DirectSum( [S, S, S ] );; gap> DirectSumFunctorial( [ nu2, nu ] );; gap> UniversalMorphismIntoDirectSum( [ nu, nu ] );; gap> UniversalMorphismFromDirectSum( [ nu, nu ] );; gap> ProjectionInFactorOfDirectSum( [ S, S, S ], 2 );; gap> InjectionOfCofactorOfDirectSum( [ S, S, S, S ], 4 );; gap> CokernelColift( nu, CokernelProjection( nu ) );; gap> IsCongruentForMorphisms( nu, PreCompose( CoastrictionToImage( nu ), ImageEmbedding( nu ) ) ); true gap> u := UniversalMorphismFromImage( nu, [ nu, IdentityMorphism( Range( nu ) ) ] );; gap> IsWellDefined( u ); true gap> IsCongruentForMorphisms( nu, PreCompose( CoastrictionToImage( nu ), u ) ); true gap> IsCongruentForMorphisms( u, ImageEmbedding( nu ) ); true gap> kernel := KernelObject( mu );; gap> emb := KernelEmbedding( mu );; gap> p := PreCompose( EpimorphismFromSomeProjectiveObject( kernel ), KernelEmbedding( mu ) );; gap> KernelLift( mu, p );; gap> LiftAlongMonomorphism( emb, p );; gap> I_to_A := FunctorCokernelImageClosureToFreydCategory( RowsR );; gap> A_to_I := FunctorFreydCategoryToCokernelImageClosure( RowsR );; gap> ApplyFunctor( I_to_A, kernel );; gap> ApplyFunctor( A_to_I, ApplyFunctor( I_to_A, kernel ) );; gap> nu := NaturalIsomorphismFromIdentityToFinitePresentationOfCokernelImageClosureObject( RowsR );; gap> mu := NaturalIsomorphismFromFinitePresentationOfCokernelImageClosureObjectToIdentity( RowsR );; gap> IsCongruentForMorphisms( > IdentityMorphism( kernel ), > PreCompose( ApplyNaturalTransformation( nu, kernel ), ApplyNaturalTransformation( mu, kernel ) ) > ); true
gap> R := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> ColsR := CategoryOfColumns( R );; gap> m := AsCategoryOfColumnsMorphism( > HomalgMatrix( "[[x],[y],[z]]", 1, 3, R ), ColsR > );; gap> mu := AsCokernelImageClosureMorphism( m );; gap> C := CokernelObject( mu );; gap> C2 := AsFinitelyPresentedCokernelImageClosureObject( m );; gap> IsEqualForObjects( C, C2 ); true gap> n := AsCategoryOfColumnsMorphism( > HomalgMatrix( "[[x,y],[y^2,z]]", 2, 2, R ), ColsR > );; gap> nu := AsCokernelImageClosureMorphism( n );; gap> nu2 := PreCompose( nu, nu );; gap> IsWellDefined( nu2 ); true gap> IsCongruentForMorphisms( nu, nu2 ); false gap> nu + nu;; gap> nu2 - nu;; gap> cat := CapCategory( nu );; gap> ZeroObject( cat );; gap> ZeroMorphism( Source( nu ), Source( mu ) );; gap> UniversalMorphismIntoZeroObject( Source( nu ) );; gap> UniversalMorphismFromZeroObject( Source( nu ) );; gap> S := Source( mu );; gap> DirectSum( [S, S, S ] );; gap> DirectSumFunctorial( [ nu2, nu ] );; gap> UniversalMorphismIntoDirectSum( [ nu, nu ] );; gap> UniversalMorphismFromDirectSum( [ nu, nu ] );; gap> ProjectionInFactorOfDirectSum( [ S, S, S ], 2 );; gap> InjectionOfCofactorOfDirectSum( [ S, S, S, S ], 4 );; gap> CokernelColift( nu, CokernelProjection( nu ) );; gap> IsCongruentForMorphisms( nu, PreCompose( CoastrictionToImage( nu ), ImageEmbedding( nu ) ) ); true gap> u := UniversalMorphismFromImage( nu, [ nu, IdentityMorphism( Range( nu ) ) ] );; gap> IsWellDefined( u ); true gap> IsCongruentForMorphisms( nu, PreCompose( CoastrictionToImage( nu ), u ) ); true gap> IsCongruentForMorphisms( u, ImageEmbedding( nu ) ); true gap> kernel := KernelObject( mu );; gap> emb := KernelEmbedding( mu );; gap> p := PreCompose( EpimorphismFromSomeProjectiveObject( kernel ), KernelEmbedding( mu ) );; gap> KernelLift( mu, p );; gap> LiftAlongMonomorphism( emb, p );; gap> I_to_A := FunctorCokernelImageClosureToFreydCategory( ColsR );; gap> A_to_I := FunctorFreydCategoryToCokernelImageClosure( ColsR );; gap> ApplyFunctor( I_to_A, kernel );; gap> ApplyFunctor( A_to_I, ApplyFunctor( I_to_A, kernel ) );; gap> nu := NaturalIsomorphismFromIdentityToFinitePresentationOfCokernelImageClosureObject( ColsR );; gap> mu := NaturalIsomorphismFromFinitePresentationOfCokernelImageClosureObjectToIdentity( ColsR );; gap> IsCongruentForMorphisms( > IdentityMorphism( kernel ), > PreCompose( ApplyNaturalTransformation( nu, kernel ), ApplyNaturalTransformation( mu, kernel ) ) > ); true
gap> R := HomalgRingOfIntegers();; gap> RowsR := CategoryOfRows( R );; gap> one := AsCategoryOfRowsMorphism( HomalgMatrix( [ [ 1 ] ], 1, 1, R ), RowsR );; gap> two := AsCategoryOfRowsMorphism( HomalgMatrix( [ [ 2 ] ], 1, 1, R ), RowsR );; gap> four := AsCategoryOfRowsMorphism( HomalgMatrix( [ [ 4 ] ], 1, 1, R ), RowsR );; gap> source := AdelmanCategoryObject( two, two );; gap> range := AdelmanCategoryObject( two, four );; gap> mor := AdelmanCategoryMorphism( source, one, range );; gap> IsZeroForMorphisms( mor ); false gap> emb := EmbeddingFunctorIntoFreydCategory( RowsR );; gap> ind := AdelmanCategoryFunctorInducedByUniversalProperty( emb );; gap> IsZeroForMorphisms( ApplyFunctor( ind, mor ) ); true gap> M := FreydCategoryObject( AsCategoryOfRowsMorphism( HomalgMatrix( [ [ 2, 2, 2 ], [ 4, 4, 6 ] ], 2, 3, R ), RowsR ) );; gap> as_tensor := EmbeddingFunctorOfFreydCategoryIntoAdelmanCategory( RowsR );; gap> Mt := ApplyFunctor( as_tensor, M );; gap> lsat := LeftSatelliteAsEndofunctorOfAdelmanCategory( RowsR );; gap> rsat := RightSatelliteAsEndofunctorOfAdelmanCategory( RowsR );; gap> torsion := ApplyFunctor( ind, ( ApplyFunctor( rsat, ApplyFunctor( lsat, Mt ) ) ) );; gap> unit := UnitOfSatelliteAdjunctionOfAdelmanCategory( RowsR );; gap> IsZeroForMorphisms( ApplyNaturalTransformation( unit, Mt ) ); true gap> counit := CounitOfSatelliteAdjunctionOfAdelmanCategory( RowsR );; gap> t := ApplyNaturalTransformation( counit, Mt );;
The sequence of modules computed via satellites behaves in a way that is not understood in the case when the ring is not Auslander regular.
gap> R := HomalgFieldOfRationalsInSingular() * "x,y";; gap> R := R/"x*y"/"x^2";; gap> RowsR := CategoryOfRows( R );; gap> Freyd := FreydCategory( RowsR );; gap> mat := HomalgMatrix( "[x,y]", 1, 2, R );; gap> M := mat/Freyd;; gap> mu1 := GradeFiltrationNthMonomorphism( M, 1 );; gap> IsMonomorphism( mu1 ); true gap> IsZero( mu1 ); false gap> IsEpimorphism( mu1 ); false gap> mu2 := GradeFiltrationNthMonomorphism( M, 2 );; gap> IsIsomorphism( mu2 ); true gap> IsZero( mu2 ); false gap> mu3 := GradeFiltrationNthMonomorphism( M, 3 );; gap> IsIsomorphism( mu3 ); true gap> IsZero( mu3 ); false gap> mu4 := GradeFiltrationNthMonomorphism( M, 4 );; gap> IsMonomorphism( mu4 ); false gap> IsEpimorphism( mu4 ); true gap> IsZero( mu4 ); false
gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";; gap> wmat := HomalgMatrix( "[ \ > x*y, y*z, z, 0, 0, \ > x^3*z,x^2*z^2,0, x*z^2, -z^2, \ > x^4, x^3*z, 0, x^2*z, -x*z, \ > 0, 0, x*y, -y^2, x^2-1,\ > 0, 0, x^2*z, -x*y*z, y*z, \ > 0, 0, x^2*y-x^2,-x*y^2+x*y,y^2-y \ > ]", 6, 5, Qxyz );; gap> RowsR := CategoryOfRows( Qxyz );; gap> Freyd := FreydCategory( RowsR );; gap> Adel := AdelmanCategory( RowsR );; gap> M := wmat/Freyd;;
We compute the grade sequence of functors (it turns out that on the level of functors, we don't get monos)
gap> M_tor := M/Adel;; gap> Mu1 := GradeFiltrationNthNaturalTransformationComponent( M_tor, 1 );; gap> IsZero( Mu1 ); false gap> IsMonomorphism( Mu1 ); true gap> Mu2 := GradeFiltrationNthNaturalTransformationComponent( M_tor, 2 );; gap> IsZero( Mu2 ); false gap> IsMonomorphism( Mu2 ); false gap> Mu3 := GradeFiltrationNthNaturalTransformationComponent( M_tor, 3 );; gap> IsZero( Mu3 ); false gap> IsMonomorphism( Mu3 ); false gap> Mu4 := GradeFiltrationNthNaturalTransformationComponent( M_tor, 4 );; gap> IsZero( Mu4 ); true
We compute the grade sequence of modules (here, we really get monos and thus a filtration)
gap> mu1 := GradeFiltrationNthMonomorphism( M, 1 );; gap> IsZero( mu1 ); false gap> IsMonomorphism( mu1 ); true gap> mu2 := GradeFiltrationNthMonomorphism( M, 2 );; gap> IsZero( mu2 ); false gap> IsMonomorphism( mu2 ); true gap> mu3 := GradeFiltrationNthMonomorphism( M, 3 );; gap> IsZero( mu3 ); false gap> IsMonomorphism( mu3 ); true gap> mu4 := GradeFiltrationNthMonomorphism( M, 4 );; gap> IsZero( mu4 ); true
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> G := SymmetricGroup( 3 );; gap> CG := GroupAsCategory( G );; gap> u := GroupAsCategoryUniqueObject( CG );; gap> alpha := GroupAsCategoryMorphism( (1,2,3), CG );; gap> alpha * Inverse( alpha ) = IdentityMorphism( u ); true gap> beta := GroupAsCategoryMorphism( (1,2,3,5), CG );; gap> IsWellDefined( beta ); false gap> gamma := GroupAsCategoryMorphism( (1,3), CG );; gap> IsWellDefined( gamma ); true gap> Lift( alpha, gamma ) * gamma = alpha; true gap> alpha * Colift( alpha, gamma ) = gamma; true gap> Length( HomomorphismStructureOnObjects( u, u ) ) = Size( G ); true gap> InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( > u,u, > PreCompose( > InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( alpha ), HomomorphismStructureOnMorphisms( gamma, Inverse( gamma ) ) > ) > ) > = > gamma * alpha * Inverse( gamma ); true gap> x := (2,3)/CG;; gap> id := ()/CG;; gap> IsIdenticalObj( x * x, id ); true #@fi
gap> R := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> Rows_R := CategoryOfRows( R );; gap> R1 := CategoryOfRowsObject( 1, Rows_R );; gap> R3 := CategoryOfRowsObject( 3, Rows_R );; gap> alpha := CategoryOfRowsMorphism( R3, HomalgMatrix( "[x,y,z]", 3, 1, R ), R1 );; gap> M := FreydCategoryObject( alpha );; gap> c0 := CovariantExtAsFreydCategoryObject( M, 0 );; gap> c1 := CovariantExtAsFreydCategoryObject( M, 1 );; gap> c2 := CovariantExtAsFreydCategoryObject( M, 2 );; gap> IsZeroForObjects( HomomorphismStructureOnObjects( c0, c2 ) ); # = Ext^2( M, M ) false
gap> R := HomalgFieldOfRationalsInSingular() * "x,y,z";; gap> Cols_R := CategoryOfColumns( R );; gap> R1 := CategoryOfColumnsObject( 1, Cols_R );; gap> R3 := CategoryOfColumnsObject( 3, Cols_R );; gap> alpha := CategoryOfColumnsMorphism( R3, HomalgMatrix( "[x,y,z]", 1, 3, R ), R1 );; gap> M := FreydCategoryObject( alpha );; gap> c0 := CovariantExtAsFreydCategoryObject( M, 0 );; gap> c1 := CovariantExtAsFreydCategoryObject( M, 1 );; gap> c2 := CovariantExtAsFreydCategoryObject( M, 2 );; gap> IsZeroForObjects( HomomorphismStructureOnObjects( c0, c2 ) ); # = Ext^2( M, M ) false
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> LoadPackage( "RingsForHomalg", false ); true gap> EEE := KoszulDualRing( HomalgFieldOfRationalsInSingular( ) * "x,y" );; gap> Eoid := RingAsCategory( EEE );; gap> a := RingAsCategoryMorphism( Eoid, 1/2 );; gap> b := RingAsCategoryMorphism( Eoid, -2/3 );; gap> u := RingAsCategoryUniqueObject( Eoid );; gap> IsCongruentForMorphisms( a, > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( > u,u, > InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( > a > ) > ) > ); true gap> a = HomStructure( u, u, HomStructure( a ) ); true gap> IsEqualForObjects( HomStructure( Eoid ), DistinguishedObjectOfHomomorphismStructure( Eoid ) ); true gap> c := RingAsCategoryMorphism( Eoid, 3 );; gap> d := RingAsCategoryMorphism( Eoid, 0 );; gap> left_coeffs := [ [ a, b ], [ c, d ] ];; gap> right_coeffs := [ [ PreCompose( a, b ), PreCompose( b, c ) ], [ c, PreCompose( a, a ) ] ];; gap> right_side := [ a, b ];; gap> MereExistenceOfSolutionOfLinearSystemInAbCategory( left_coeffs, right_coeffs, right_side ); true gap> solution := > SolveLinearSystemInAbCategory( > left_coeffs, > right_coeffs, > right_side > );; gap> ForAll( [ 1, 2 ], i -> > IsCongruentForMorphisms( > Sum( List( [ 1, 2 ], j -> PreCompose( [ left_coeffs[i][j], solution[j], right_coeffs[i][j] ] ) ) ), > right_side[i] > ) > ); true gap> IsLiftable( c, d ); false gap> LiftOrFail( c, d ); fail gap> IsLiftable( d, c ); true gap> LiftOrFail( d, c ); <0> gap> Lift( d, c ); <0> gap> IsColiftable( c, d ); true gap> ColiftOrFail( c, d ); <0> gap> Colift( c, d ); <0> gap> IsColiftable( d, c ); false gap> ColiftOrFail( d, c ); fail
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> G := SymmetricGroup( 3 );; gap> CG := GroupAsCategory( G );; gap> compare_func := function( g, h ) return UnderlyingGroupElement( g ) < UnderlyingGroupElement( h ); end;; gap> ZZZ := HomalgRingOfIntegers();; gap> ZCG := LinearClosure( ZZZ, CG, compare_func );; gap> u := GroupAsCategoryUniqueObject( CG );; gap> g := GroupAsCategoryMorphism( (1,2,3), CG );; gap> h := GroupAsCategoryMorphism( (1,2), CG );; gap> v := LinearClosureObject( ZCG, u );; gap> elem1 := LinearClosureMorphism( v, [ 1, 2, 3, 4, 5, 6 ], [ g, h, g, h, g, h ], v );; gap> elem2 := LinearClosureMorphism( v, [ 1, 2, 3, 4, 5, 6 ], [ h, g, h, g, h, g ], v );; gap> # for i in [ 1 .. 10^6 ] do LinearClosureMorphism( v, [ 1, 2, 3, 4, 5, 6 ], [ g, h, g, h, g, h ], v ); od; gap> elem := LinearClosureMorphism( v, [ 0, 0, 0, 0, 0, 0 ], [ g, h, g, h, g, h ], v );; gap> a := (1,2)/CG/ZCG;; gap> b := (2,3)/CG/ZCG;; gap> IsIsomorphism( a + b ); false gap> Lift( a + b, a ) * a = a + b; true gap> IsLiftable( a + b, -2*a ); ## over Q this is liftable false #@fi
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> #Incidence matrix of our proset > K := [ [1, 1, 1], [0, 1, 1], [0, 1, 1] ];; gap> #Construction of a tower of categories > CP_K := ProSetAsCategory( K );; gap> ZZZ := HomalgRingOfIntegers( );; gap> ZP_K := LinearClosure( ZZZ, CP_K, ReturnTrue );; gap> RowsP_K := AdditiveClosure( ZP_K );; gap> a := ProSetAsCategoryObject( 1, CP_K );; gap> b := ProSetAsCategoryObject( 2, CP_K );; gap> c := ProSetAsCategoryObject( 3, CP_K );; gap> #Three random objects in the additive closure > #Such that there exists morphisms from A->B and B->C: > rand_coef := List( [ 1 .. 5 ], i -> Random( [ 2 .. 20 ] ) );; gap> A1 := List( [ 1 .. rand_coef[ 1 ] ], i -> a );; gap> A2 := List( [ 1 .. rand_coef[ 2 ] ], i -> b );; gap> A := Concatenation( A1, A2 );; gap> B1 := List( [ 1 .. rand_coef[ 3 ] ], i -> b );; gap> B2 := List( [ 1 .. rand_coef[ 4 ] ], i -> c );; gap> B := Concatenation( B1, B2 );; gap> C := List([ 1 .. rand_coef[ 5 ] ], i -> c);; gap> #A random lifting problem over ZP_K > MA_B := List( [ 1 .. rand_coef[ 1 ] + rand_coef[ 2 ] ], i -> > List( [ 1 .. rand_coef[ 3 ] + rand_coef[ 4 ] ], j -> > LinearClosureMorphism( LinearClosureObject( A[i], ZP_K ), [Random( [ -20 .. 20 ] )], [ProSetAsCategoryMorphism( A[i], B[j] )], LinearClosureObject( B[j], ZP_K ) ) > ) > );; gap> alpha := MA_B/RowsP_K;; gap> MB_C := List( [ 1 .. rand_coef[ 3 ] + rand_coef[ 4 ] ], i -> > List( [ 1 .. rand_coef[ 5 ] ], j -> > LinearClosureMorphism( LinearClosureObject( B[i], ZP_K ), [Random( [ -20 .. 20 ] )], [ProSetAsCategoryMorphism( B[i], C[j] )], LinearClosureObject( C[j], ZP_K ) ) > ) > );; gap> beta := MB_C/RowsP_K;; gap> gamma := PreCompose( alpha, beta );; gap> lift := Lift( gamma, beta );; gap> PreCompose(lift, beta) = gamma; true #@fi
Construction of a tower of categories
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> G := SymmetricGroup( 3 );; gap> CG := GroupAsCategory( G );; gap> ZZZ := HomalgRingOfIntegers( );; gap> ZCG := LinearClosure( ZZZ, CG );; gap> RowsG := AdditiveClosure( ZCG );; #@fi
Construction of elements
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> a := (1,2)/CG/ZCG;; gap> b := (2,3)/CG/ZCG;; gap> e := ()/CG/ZCG;; gap> omega := [ [ a - e ], [ b - e ] ]/RowsG;; gap> u := GroupAsCategoryUniqueObject( CG );; gap> v := LinearClosureObject( ZCG, u );; gap> u := AsAdditiveClosureObject( v );; gap> HomStructure( u, omega );; #@fi
A random lifting problem over ZG
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> elem := Elements( G );; gap> elem := List( elem, x -> x/CG/ZCG );; gap> rand_elem := function() local coeffs; coeffs := List( [ 1 .. 6 ], i -> Random( [ -20 .. 20 ] ) ); if ForAll( coeffs, IsZero ) then return ZeroMorphism( v, v ); fi; return Sum( List( [ 1 .. 6 ], i -> Random( [ -20 .. 20 ] ) * One( ZZZ ) * elem[i] ) ); end;; gap> mat10_11 := List( [ 1 .. 10 ], i -> > List( [ 1 .. 11 ], j -> > rand_elem() > ) > );; gap> mat11_12 := List( [ 1 .. 11 ], i -> > List( [ 1 .. 12 ], j -> > rand_elem() > ) > );; gap> alpha := mat10_11/RowsG;; gap> beta := mat11_12/RowsG;; gap> gamma := PreCompose( alpha, beta );; gap> lift := Lift( gamma, beta );; gap> PreCompose( lift, beta ) = gamma; true #@fi
Assume that we have the constructors CategoryOfRows
and CategoryOfColumns
but no constructor Opposite
. Then we can still model Opposite( CategoryOfRows )
as CategoryOfColumns
using ReinterpretationOfCategory
. This can be achieved up to minor modifications by swapping object_constructor
and modeling_tower_object_constructor
and so on in CategoryOfColums_as_Opposite_CategoryOfRows
. With this, objects and morphisms indeed have the attribute Opposite
as desired. Getting ObjectDatum
and MorphismDatum
to return this attribute would also be possible, but would require more effort than simply swapping object_constructor
and modeling_tower_object_constructor
and so.
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> QQ := HomalgFieldOfRationals( );; gap> cols := CategoryOfColumns( QQ );; gap> rows := CategoryOfRows( QQ );; gap> object_constructor := > { cat, rank } -> CreateCapCategoryObjectWithAttributes( cat, > Opposite, CategoryOfRowsObject( Opposite( cat ), rank ) > );; gap> modeling_tower_object_constructor := > { cat, rank } -> CreateCapCategoryObjectWithAttributes( ModelingCategory( cat ), > RankOfObject, rank > );; gap> object_datum := { cat, obj } -> RankOfObject( Opposite( obj ) );; gap> modeling_tower_object_datum := { cat, obj } -> RankOfObject( obj );; gap> morphism_constructor := > { cat, source, underlying_matrix, range } -> > CreateCapCategoryMorphismWithAttributes( > cat, > source, range, > Opposite, CategoryOfRowsMorphism( > Opposite( cat ), > Opposite( range ), > underlying_matrix, > Opposite( source ) > ) > );; gap> modeling_tower_morphism_constructor := > { cat, source, underlying_matrix, range } -> > CreateCapCategoryMorphismWithAttributes( > ModelingCategory( cat ), > source, range, > UnderlyingMatrix, underlying_matrix > );; gap> morphism_datum := { cat, mor } -> UnderlyingMatrix( Opposite( mor ) );; gap> modeling_tower_morphism_datum := { cat, mor } -> UnderlyingMatrix( mor );; gap> op := ReinterpretationOfCategory( cols, rec( > name := Concatenation( "Opposite( ", Name( rows )," )" ), > category_filter := WasCreatedAsOppositeCategory, > category_object_filter := IsCapCategoryOppositeObject, > category_morphism_filter := IsCapCategoryOppositeMorphism, > object_constructor := object_constructor, > object_datum := object_datum, > morphism_constructor := morphism_constructor, > morphism_datum := morphism_datum, > modeling_tower_object_constructor := modeling_tower_object_constructor, > modeling_tower_object_datum := modeling_tower_object_datum, > modeling_tower_morphism_constructor := modeling_tower_morphism_constructor, > modeling_tower_morphism_datum := modeling_tower_morphism_datum, > only_primitive_operations := true, > ) ); Opposite( Rows( Q ) ) gap> SetOpposite( op, rows ); gap> source := ObjectConstructor( op, 1 ); <An object in Opposite( Rows( Q ) )> gap> range := ObjectConstructor( op, 2 ); <An object in Opposite( Rows( Q ) )> gap> zero := ZeroMorphism( source, range ); <A zero morphism in Opposite( Rows( Q ) )> gap> sum := AdditionForMorphisms( zero, zero ); <A morphism in Opposite( Rows( Q ) )> gap> # notice that source and range are indeed swapped compared to the above > Display( Source( Opposite( sum ) ) ); A row module over Q of rank 2 gap> Display( Range( Opposite( sum ) ) ); A row module over Q of rank 1
gap> R := HomalgRingOfIntegers();; gap> rows := CategoryOfRows( R );; gap> adelman := AdelmanCategory( rows );; gap> rowobj := CategoryOfRowsObject( 1, rows );; gap> alpha := ProjectionInFactorOfDirectSum( [ rowobj, rowobj ], 1 );; gap> alpha := AsAdelmanCategoryMorphism( alpha );; gap> obj := CokernelObject( alpha );; gap> IsBijectiveObject( obj ); true gap> beta := 2 * IdentityMorphism( rowobj );; gap> beta := AsAdelmanCategoryMorphism( beta );; gap> obj1 := CokernelObject( beta );; gap> obj2 := KernelObject( beta );; gap> obj3 := ImageObject( beta );; gap> obj4 := HomologyObject( beta, beta );; gap> IsBijectiveObject( obj1 ); false gap> IsInjective( obj1 ); true gap> ProjectiveDimension( obj1 ); 2 gap> IsBijectiveObject( obj2 ); false gap> IsProjective( obj2 ); true gap> InjectiveDimension( obj2 ); 2 gap> ProjectiveDimension( obj3 ); 1 gap> InjectiveDimension( obj3 ); 1 gap> ProjectiveDimension( obj4 ); 2 gap> InjectiveDimension( obj4 ); 2
#@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> K := [ [1, 1, 1], [0, 1, 1], [0, 1, 1] ];; gap> L := [ [1, 1, 0], [0, 1, 1], [0, 0, 1] ];; gap> P_K := ProSetAsCategory(K);; gap> #ProSetAsCategory(L); gap> a := 1/P_K;; gap> b := ProSetAsCategoryObject(2, P_K);; gap> c := ProSetAsCategoryObject(3, P_K);; gap> d := ProSetAsCategoryObject(4, P_K);; gap> delta := ProSetAsCategoryMorphism(b, a);; gap> IsWellDefined(a); true gap> IsWellDefined(d); false gap> IsWellDefined(delta); false gap> alpha := ProSetAsCategoryMorphism(a, b);; gap> beta := ProSetAsCategoryMorphism(b, c);; gap> gamma := ProSetAsCategoryMorphism(a, c);; gap> gamma = PreCompose(alpha, beta); true gap> id_a := IdentityMorphism(a);; gap> IsWellDefined(Inverse(alpha)); false gap> beta*Inverse(beta) = IdentityMorphism(b); true gap> alpha = Lift(gamma, beta); true gap> IsLiftable(beta, gamma); false gap> Colift(alpha, gamma) = beta; true gap> alpha = HomStructure(a, b, HomStructure(alpha)); true #@fi
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> R := HomalgRingOfIntegers( ) ;; gap> cat := CategoryOfColumns( R );; gap> A := RandomObjectByInteger( cat, 2 );; gap> B := RandomObjectByInteger( cat, 2 );; gap> mor1 := RandomMorphismByInteger( cat, 2 );; gap> mor2 := RandomMorphismWithFixedSourceByInteger( cat, CategoryOfColumnsObject( cat, 3 ), 2 );; gap> mor3 := RandomMorphismWithFixedRangeByInteger( cat, CategoryOfColumnsObject( cat, 3 ), 2 );; gap> mor4 := RandomMorphismWithFixedSourceAndRangeByInteger( cat, CategoryOfColumnsObject( cat, 3 ), CategoryOfColumnsObject( cat, 4 ), 2 );; gap> RankOfObject( Source( mor2 ) ) = 3; true gap> RankOfObject( Range( mor3 ) ) = 3; true gap> RankOfObject( Source( mor4 ) ) = 3; true gap> RankOfObject( Range( mor4 ) ) = 4; true
gap> LoadPackage( "FreydCategoriesForCAP", false ); true gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> QQxy := QQ * "x,y";; gap> EQQxy := KoszulDualRing( QQxy );; gap> R := KoszulDualRing( HomalgRingOfIntegersInSingular( ) * "x,y" );; gap> CAP_INTERNAL_GENERATE_DOCUMENTATION_FOR_CATEGORY_INSTANCES( > [ > [ CategoryOfRows( R ), "CategoryOfRows of an arbitrary ring" ], > [ CategoryOfRows( EQQxy ), "CategoryOfRows of an exterior algebra over a field" ], > [ CategoryOfRows( QQxy ), "CategoryOfRows of a commutative ring" ], > [ CategoryOfRows( QQ ), "CategoryOfRows of a field" ], > ], > "FreydCategoriesForCAP", > "CategoryOfRows.autogen.gd", > "Category of rows", > "Supported CAP operations" > );
gap> F := HomalgRingOfIntegers( 3 );; gap> vec := CategoryOfRows( F );; gap> rel := RelCategory( vec );; gap> A := 1/vec/rel;; gap> id := IdentityMorphism( A );; gap> IsWellDefined( id ); true gap> alpha := HomalgMatrix( "[ 1, 2 ]", 2, 1, F )/vec;; gap> alpha_rel := alpha/rel;; gap> alpha_rel_inv := rel/alpha;; gap> beta := PreCompose( alpha_rel_inv, alpha_rel );; gap> IsCongruentForMorphisms( beta, id ); true gap> IsEqualForMorphisms( beta, id ); false gap> R := HomalgFieldOfRationalsInSingular() * "t";; gap> t := IndeterminatesOfPolynomialRing( R )[1];; gap> cocycle := function( a, b, c ) local e; e := CoastrictionToImage( UniversalMorphismIntoDirectSum( [ ReversedArrow( c ), Arrow( c ) ] ) ); return t^RankOfObject( KernelObject( e ) ); end;; #@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> T := TwistedLinearClosure( R, rel, cocycle );; gap> gamma := beta/T;; gap> delta := ZeroMorphism( 1/vec, 1/vec )/rel/T;; gap> IsZeroForMorphisms( 3*gamma - 3*gamma ); true gap> IsCongruentForMorphisms( delta, gamma ); false gap> beta := PreCompose( alpha_rel_inv/T, alpha_rel/T );; gap> IsZeroForMorphisms( beta - t * IdentityMorphism( Range( alpha_rel/T ) ) ); true gap> IsZeroForMorphisms( ( gamma * delta ) * gamma - gamma * ( delta * gamma ) ); true #@fi
gap> CR := RingAsCategory( Integers );; gap> u := RingAsCategoryUniqueObject( CR );; gap> alpha := 2 / CR; <2> gap> IsOne( alpha ); false gap> IsZeroForMorphisms( alpha ); false gap> alpha * alpha; <4> gap> -alpha; <-2> gap> IsZeroForMorphisms( alpha + AdditiveInverse( alpha ) ); true gap> beta := RingAsCategoryMorphism( 1/2, CR );; gap> IsWellDefined( beta ); false gap> gamma := IdentityMorphism( u ); <1> gap> IsOne( gamma ); true gap> delta := ZeroMorphism( u, u ); <0> gap> IsZeroForMorphisms( delta ); true gap> 2 * alpha; <4> gap> Lift( alpha * alpha, alpha ); <2> gap> Colift( alpha, alpha * alpha ); <2> gap> BasisOfExternalHom( u, u ); [ <1> ] gap> CoefficientsOfMorphism( alpha ); [ 2 ] gap> IsCongruentForMorphisms( alpha, LinearCombinationOfMorphisms( u, CoefficientsOfMorphism( alpha ), BasisOfExternalHom( u, u ), u ) ); true gap> EEE := KoszulDualRing( HomalgFieldOfRationalsInSingular( ) * "x,y" );; gap> CE := RingAsCategory( EEE );; gap> u := RingAsCategoryUniqueObject( CE );; gap> alpha := ("2 + 3 * e0 + 4 * e1 + 5 * e0*e1" / EEE) / CE; <5*e0*e1+3*e0+4*e1+2> gap> IsOne( alpha ); false gap> IsZeroForMorphisms( alpha ); false gap> alpha * alpha; <20*e0*e1+12*e0+16*e1+4> gap> -alpha; <-5*e0*e1-3*e0-4*e1-2> gap> IsZeroForMorphisms( alpha + AdditiveInverse( alpha ) ); true gap> gamma := IdentityMorphism( u ); <1> gap> IsOne( gamma ); true gap> delta := ZeroMorphism( u, u ); <0> gap> IsZeroForMorphisms( delta ); true gap> 2 * alpha; <10*e0*e1+6*e0+8*e1+4> gap> Lift( alpha * alpha, alpha ); <5*e0*e1+3*e0+4*e1+2> gap> Colift( alpha, alpha * alpha ); <5*e0*e1+3*e0+4*e1+2> gap> basis := BasisOfExternalHom( u, u ); [ <1>, <e0>, <e1>, <e0*e1> ] gap> coeffs := CoefficientsOfMorphism( alpha ); [ 2, 3, 4, 5 ] gap> IsCongruentForMorphisms( alpha, LinearCombinationOfMorphisms( u, coeffs, basis, u ) ); true gap> u_op := Opposite( u ); <An object in Opposite( RingAsCategory( Q{e0,e1} ) )> gap> alpha_op := Opposite( alpha ); <A morphism in Opposite( RingAsCategory( Q{e0,e1} ) )> gap> basis := BasisOfExternalHom( u_op, u_op );; gap> coeffs := CoefficientsOfMorphism( alpha_op ); [ 2, 3, 4, 5 ] gap> IsCongruentForMorphisms( alpha_op, LinearCombinationOfMorphisms( u_op, coeffs, basis, u_op ) ); true
generated by GAPDoc2HTML