Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

11 Freyd category
 11.1 Random methods in Freyd categories
 11.2 Internal Hom-Embedding
 11.3 Convenient methods for tensor products of freyd objects and morphisms

11 Freyd category

11.1 Random methods in Freyd categories

11.1-1 RandomObjectByList
‣ RandomObjectByList( cat, L )( operation )

Returns: an object in a Freyd category

The arguments are a Freyd category cat of a category underlying_cat and a list L. The output is an object in cat whose relation morphism is a random morphism in underlying_cat constructed via RandomMorphismByList(underlying_cat, L).

11.1-2 RandomObjectByInteger
‣ RandomObjectByInteger( cat, n )( operation )

Returns: an object in a Freyd category

The arguments are a Freyd category cat of a category underlying_cat and an integer n. The output is an object in cat whose relation morphism is a random morphism in underlying_cat constructed via RandomMorphismByInteger(underlying_cat, n).

11.1-3 RandomMorphismWithFixedSourceAndRangeByList
‣ RandomMorphismWithFixedSourceAndRangeByList( S, R, L )( operation )

Returns: a morphism in a Freyd category

The arguments are two objects S and R in a Freyd category cat of a category underlying_cat and a list L. The category cat is required to have a homomorphism structure \((1,H,\nu)\) over underlying_cat or cat. The output is a morphism in cat constructed as follows:

11.1-4 RandomMorphismWithFixedSourceAndRangeByInteger
‣ RandomMorphismWithFixedSourceAndRangeByInteger( S, R, n )( operation )

Returns: a morphism in a Freyd category

The arguments are two objects S and R in a Freyd category cat of a category underlying_cat and an integer n. The category cat is required to have a homomorphism structure \((1,H,\nu)\) over underlying_cat or cat. The output is a morphism in cat constructed as follows:

11.1-5 RandomMorphismWithFixedSourceByList
‣ RandomMorphismWithFixedSourceByList( S, L )( operation )

Returns: a morphism in a Freyd category

The arguments are an object S in a Freyd category cat of a category underlying_cat and a list L. We denote the relation morphism of S by \(\rho_S:S_1 \to S_2\) in underlying_cat. The output is a morphism in cat constructed as follows:

The output is a morphism \(S \to R\) in cat whose morphism datum is \(\delta \circ \mu_1\) and whose range's relation morphism is \(\delta \circ \mu_2\).

11.1-6 RandomMorphismWithFixedSourceByInteger
‣ RandomMorphismWithFixedSourceByInteger( S, n )( operation )

Returns: a morphism in a Freyd category

The arguments are an object S in a Freyd category cat of a category underlying_cat and an integer n. We denote the relation morphism of S by \(\rho_S:S_1 \to S_2\) in underlying_cat. The output is a morphism in cat constructed as follows:

The output is a morphism \(S \to R\) in cat whose morphism datum is \(\delta \circ \mu_1\) and whose range's relation morphism is \(\delta \circ \mu_2\).

11.1-7 RandomMorphismWithFixedRangeByList
‣ RandomMorphismWithFixedRangeByList( R, L )( operation )

Returns: a morphism in a Freyd category

The arguments are an object R in a Freyd category cat of a category underlying_cat and a list L. We denote the relation morphism of R by \(\rho_R:R_1 \to R_2\) in underlying_cat. The output is a morphism in cat constructed as follows:

The output is a morphism \(S \to R\) in cat whose morphism datum is \(\rho\) and whose source's relation morphism is \(\rho_S \circ \delta\).

11.1-8 RandomMorphismWithFixedRangeByInteger
‣ RandomMorphismWithFixedRangeByInteger( R, n )( operation )

Returns: a morphism in a Freyd category

The arguments are an object R in a Freyd category cat of a category underlying_cat and an integer n. We denote the relation morphism of R by \(\rho_R:R_1 \to R_2\) in underlying_cat. The output is a morphism in cat constructed as follows:

The output is a morphism \(S \to R\) in cat whose morphism datum is \(\rho\) and whose source's relation morphism is \(\rho_S \circ \delta\).

11.1-9 RandomMorphismByList
‣ RandomMorphismByList( cat, L )( operation )

Returns: a morphism in a Freyd category

The arguments are a Freyd category cat and a list L consisting of three lists. The output is constructed via RandomMorphismWithFixedSourceAndRangeByList(\(S\),\(R\),L[3]) where \(S\) is constructed via RandomObjectByList(cat,L[1]) and \(R\) via RandomObjectByList(cat,L[2]).

11.1-10 RandomMorphismByInteger
‣ RandomMorphismByInteger( cat, n )( operation )

Returns: a morphism in a Freyd category

The arguments are a Freyd category cat and an integer n. The output is constructed via RandomMorphismWithFixedSourceAndRangeByInteger(\(S\),\(R\),n) where \(S\) and \(R\) are random objects constructed via RandomObjectByInteger(cat,n).

11.2 Internal Hom-Embedding

11.2-1 INTERNAL_HOM_EMBEDDING
‣ INTERNAL_HOM_EMBEDDING( cat, a, b )( operation )

Returns: a (mono)morphism

The arguments are two objects a and b of a Freyd category cat. Assume that the relation morphism for \(a\) is \(\alpha \colon R_A \to A\), then we have the exact sequence \(0 \to \mathrm{\underline{Hom}} \left( a,b \right) \to \mathrm{\underline{Hom}}(A, b) \to \mathrm{\underline{Hom}}(R_A, b)\). The embedding of \(\mathrm{\underline{Hom}}( a, b )\) into \(\mathrm{\underline{Hom}}(A, b)\) is the internal Hom-embedding. This method returns this very map.

11.3 Convenient methods for tensor products of freyd objects and morphisms

11.3-1 *
‣ *( arg1, arg2 )( operation )

11.3-2 ^
‣ ^( arg1, arg2 )( operation )

11.3-3 *
‣ *( arg1, arg2 )( operation )

11.3-4 ^
‣ ^( arg1, arg2 )( operation )
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind

generated by GAPDoc2HTML