Goto Chapter: Top 1 2 3 4 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Triangulated Categories
 3.1 Categorical operations

  3.1-1 StandardConeObject

  3.1-2 MorphismIntoStandardConeObjectWithGivenStandardConeObject

  3.1-3 MorphismIntoStandardConeObject

  3.1-4 MorphismFromStandardConeObjectWithGivenObjects

  3.1-5 MorphismFromStandardConeObject

  3.1-6 ShiftOfObject

  3.1-7 ShiftOfMorphismWithGivenObjects

  3.1-8 ShiftOfMorphism

  3.1-9 Shift

  3.1-10 InverseShiftOfObject

  3.1-11 InverseShiftOfMorphismWithGivenObjects

  3.1-12 InverseShiftOfMorphism

  3.1-13 InverseShift

  3.1-14 UnitOfShiftAdjunctionWithGivenObject

  3.1-15 UnitOfShiftAdjunction

  3.1-16 InverseOfCounitOfShiftAdjunctionWithGivenObject

  3.1-17 InverseOfCounitOfShiftAdjunction

  3.1-18 InverseOfUnitOfShiftAdjunctionWithGivenObject

  3.1-19 InverseOfUnitOfShiftAdjunction

  3.1-20 CounitOfShiftAdjunctionWithGivenObject

  3.1-21 CounitOfShiftAdjunction

  3.1-22 MorphismBetweenStandardConeObjectsWithGivenObjects

  3.1-23 MorphismBetweenStandardConeObjects

  3.1-24 ConeObjectByOctahedralAxiom

  3.1-25 DomainMorphismByOctahedralAxiomWithGivenObjects

  3.1-26 MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects

  3.1-27 MorphismFromConeObjectByOctahedralAxiomWithGivenObjects

  3.1-28 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects

  3.1-29 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom

  3.1-30 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects

  3.1-31 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom

  3.1-32 ConeObjectByRotationAxiom

  3.1-33 DomainMorphismByRotationAxiom

  3.1-34 MorphismIntoConeObjectByRotationAxiom

  3.1-35 MorphismFromConeObjectByRotationAxiom

  3.1-36 WitnessIsomorphismIntoStandardConeObjectByRotationAxiom

  3.1-37 WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects

  3.1-38 WitnessIsomorphismFromStandardConeObjectByRotationAxiom

  3.1-39 WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects

  3.1-40 ConeObjectByInverseRotationAxiom

  3.1-41 DomainMorphismByInverseRotationAxiom

  3.1-42 MorphismIntoConeObjectByInverseRotationAxiom

  3.1-43 MorphismFromConeObjectByInverseRotationAxiom

  3.1-44 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom

  3.1-45 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects

  3.1-46 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom

  3.1-47 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects

  3.1-48 ShiftExpandingIsomorphismWithGivenObjects

  3.1-49 ShiftExpandingIsomorphism

  3.1-50 ShiftFactoringIsomorphismWithGivenObjects

  3.1-51 ShiftFactoringIsomorphism

  3.1-52 InverseShiftExpandingIsomorphismWithGivenObjects

  3.1-53 InverseShiftExpandingIsomorphism

  3.1-54 InverseShiftFactoringIsomorphismWithGivenObjects

  3.1-55 InverseShiftFactoringIsomorphism

3 Triangulated Categories

3.1 Categorical operations

3.1-1 StandardConeObject
‣ StandardConeObject( alpha )( attribute )

Returns: an object

The argument is a morphism \(\alpha:A\to B\) in a triangulated category. The output is the standard cone object \(C(\alpha)\) of \(\alpha\).

3.1-2 MorphismIntoStandardConeObjectWithGivenStandardConeObject
‣ MorphismIntoStandardConeObjectWithGivenStandardConeObject( alpha, C )( operation )

Returns: a morphism \(\iota(\alpha):B\to C(\alpha)\)

The arguments are a morphism \(\alpha: A \to B\) in a triangulated category and an object \(C:=C(\alpha)\). The output is the morphism \(\iota(\alpha):B\to C(\alpha)\) into the standard cone object \(C(\alpha)\).

3.1-3 MorphismIntoStandardConeObject
‣ MorphismIntoStandardConeObject( alpha )( attribute )

Returns: a morphism \(\iota(\alpha):B\to C(\alpha)\)

The argument is a morphism \(\alpha: A \to B\) in a triangulated category. The output is the morphism \(\iota(\alpha):B\to C(\alpha)\) into the standard cone object \(C(\alpha)\).

3.1-4 MorphismFromStandardConeObjectWithGivenObjects
‣ MorphismFromStandardConeObjectWithGivenObjects( alpha, C )( operation )

Returns: a morphism \(\pi(\alpha):C(\alpha)\to\Sigma A\)

The arguments are a morphism \(\alpha: A \to B\) in a triangulated category and an object \(C:=C(\alpha)\). The output is the morphism \(\pi(\alpha):C(\alpha)\to\Sigma A\) from the standard cone object \(C(\alpha)\).

3.1-5 MorphismFromStandardConeObject
‣ MorphismFromStandardConeObject( alpha, C )( attribute )

Returns: a morphism \(\pi(\alpha):C(\alpha)\to\Sigma A\)

The argument is a morphism \(\alpha: A \to B\) in a triangulated category. The output is the morphism \(\pi(\alpha):C(\alpha)\to\Sigma A\) from the standard cone object \(C(\alpha)\).

3.1-6 ShiftOfObject
‣ ShiftOfObject( A )( attribute )

Returns: \(\Sigma A\)

The argument is an object \(A\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma A\).

3.1-7 ShiftOfMorphismWithGivenObjects
‣ ShiftOfMorphismWithGivenObjects( sigma_A, alpha, sigma_B )( operation )

Returns: \(\Sigma \alpha:\Sigma A \to \Sigma B\)

The arguments are an object \(\Sigma A\), a morphism \(\alpha:A\to B\) and an object \(\Sigma B\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma \alpha:\Sigma A \to \Sigma B\).

3.1-8 ShiftOfMorphism
‣ ShiftOfMorphism( alpha )( attribute )

Returns: \(\Sigma \alpha:\Sigma A \to \Sigma B\)

The argument is a morphism \(\alpha:A\to B\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma \alpha:\Sigma A \to \Sigma B\).

3.1-9 Shift
‣ Shift( c )( operation )

Returns: \(\Sigma c\)

This is a convenience method to apply the shift functor on objects or morphisms. The operation delegates to either ShiftOfObject or ShiftOfMorphism.

3.1-10 InverseShiftOfObject
‣ InverseShiftOfObject( A )( operation )

Returns: \(\Sigma^{-1} A\)

The argument is an object \(A\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma^{-1} A\).

3.1-11 InverseShiftOfMorphismWithGivenObjects
‣ InverseShiftOfMorphismWithGivenObjects( rev_sigma_A, alpha, rev_sigma_B )( operation )

Returns: \(\Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B\)

The arguments are an object \(\Sigma^{-1} A\), a morphism \(\alpha:A\to B\) and an object \(\Sigma^{-1} B\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B\).

3.1-12 InverseShiftOfMorphism
‣ InverseShiftOfMorphism( alpha )( attribute )

Returns: \(\Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B\)

The argument is a morphism \(\alpha:A\to B\) in a triangulated category \(\mathcal{T}\). The output is \(\Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B\).

3.1-13 InverseShift
‣ InverseShift( c )( operation )

Returns: \(\Sigma^{-1} c\)

This is a convenience method to apply the inverse shift functor on objects or morphisms. The operation delegates to either InverseShiftOfObject or InverseShiftOfMorphism.

3.1-14 UnitOfShiftAdjunctionWithGivenObject
‣ UnitOfShiftAdjunctionWithGivenObject( A, sigma_o_rev_sigma_A )( operation )

Returns: a morphism \(A \to (\Sigma \circ \Sigma^{-1}) A\)

The arguments are two objects \(A\) and \((\Sigma \circ \Sigma^{-1}) A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(A \to (\Sigma \circ \Sigma^{-1}) A\)

3.1-15 UnitOfShiftAdjunction
‣ UnitOfShiftAdjunction( A )( attribute )

Returns: a morphism \(A \to (\Sigma \circ \Sigma^{-1}) A\)

The argument is an object \(A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(A \to (\Sigma \circ \Sigma^{-1}) A\)

3.1-16 InverseOfCounitOfShiftAdjunctionWithGivenObject
‣ InverseOfCounitOfShiftAdjunctionWithGivenObject( A, rev_sigma_o_sigma_A )( operation )

Returns: a morphism \(A \to (\Sigma^{-1} \circ \Sigma) A\)

The arguments are two objects \(A\) and \((\Sigma^{-1} \circ \Sigma) A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(A \to (\Sigma^{-1} \circ \Sigma) A\)

3.1-17 InverseOfCounitOfShiftAdjunction
‣ InverseOfCounitOfShiftAdjunction( A )( attribute )

Returns: a morphism \(A \to (\Sigma^{-1} \circ \Sigma) A\)

The argument is an object \(A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(A \to (\Sigma^{-1} \circ \Sigma) A\)

3.1-18 InverseOfUnitOfShiftAdjunctionWithGivenObject
‣ InverseOfUnitOfShiftAdjunctionWithGivenObject( A, sigma_o_rev_sigma_A )( operation )

Returns: a morphism \((\Sigma \circ \Sigma^{-1}) A \to A\)

The arguments are two objects \(A\) and \((\Sigma \circ \Sigma^{-1}) A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \((\Sigma \circ \Sigma^{-1}) A \to A\)

3.1-19 InverseOfUnitOfShiftAdjunction
‣ InverseOfUnitOfShiftAdjunction( A )( attribute )

Returns: a morphism \((\Sigma \circ \Sigma^{-1}) A \to A\)

The argument in an objects \(A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \((\Sigma \circ \Sigma^{-1}) A \to A\)

3.1-20 CounitOfShiftAdjunctionWithGivenObject
‣ CounitOfShiftAdjunctionWithGivenObject( A, rev_sigma_o_sigma_A )( operation )

Returns: a morphism \((\Sigma^{-1} \circ \Sigma) A \to A\)

The arguments are two objects \(A\) and \((\Sigma^{-1} \circ \Sigma) A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \((\Sigma^{-1} \circ \Sigma) A \to A\)

3.1-21 CounitOfShiftAdjunction
‣ CounitOfShiftAdjunction( A )( attribute )

Returns: a morphism \((\Sigma^{-1} \circ \Sigma) A \to A\)

The argument is an object \(A\) in a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \((\Sigma^{-1} \circ \Sigma) A \to A\)

3.1-22 MorphismBetweenStandardConeObjectsWithGivenObjects
‣ MorphismBetweenStandardConeObjectsWithGivenObjects( C_alpha_1, list, C_alpha_2 )( operation )

Returns: a morphism \(C(\alpha_1) \to C(\alpha_2)\)

The arguments are an object \(C_{\alpha_1}\), a list of four morphisms \(\alpha_1:A_1\to B_1\), \(u:A_1\to A_2\), \(v:B_1\to B_2\), \(\alpha_2:A_2\to B_2\) and an object \(C_{\alpha_2}\) such that \(C_{\alpha_1}:=C(\alpha_1)\), \(C_{\alpha_2}:=C(\alpha_2)\) and \(v\circ \alpha_1=\alpha_2\circ u\). The output is a morphism \(w:C(\alpha_1) \to C(\alpha_2)\) such that \(w\circ \iota(\alpha_1)=\iota(\alpha_2)\circ v\) and \(\Sigma u\circ\pi(\alpha_1)=\pi(\alpha_2)\circ w\).

3.1-23 MorphismBetweenStandardConeObjects
‣ MorphismBetweenStandardConeObjects( alpha_1, u, v, alpha_2 )( operation )

Returns: a morphism \(C(\alpha_1) \to C(\alpha_2)\)

The arguments are morphisms \(\alpha_1:A_1\to B_1\), \(u:A_1\to A_2\), \(v:B_1\to B_2\), \(\alpha_2:A_2\to B_2\) such that \(v\circ \alpha_1=\alpha_2\circ u\). The output is a morphism \(w:C(\alpha_1) \to C(\alpha_2)\) such that \(w\circ \iota(\alpha_1)=\iota(\alpha_2)\circ v\) and \(\Sigma u\circ\pi(\alpha_1)=\pi(\alpha_2)\circ w\).

3.1-24 ConeObjectByOctahedralAxiom
‣ ConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: \(C(\beta)\)

The arguments are two morphisms \(\alpha:A\to B\), \(\beta:B\to C\). The output is the standard cone object \(C(\beta)\).

3.1-25 DomainMorphismByOctahedralAxiomWithGivenObjects
‣ DomainMorphismByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism \(u_{\alpha,\beta}\):\(C(\alpha)\to C(\beta\circ\alpha)\)

The arguments are two morphisms \(\alpha:A\to B\), \(\beta:B\to C\). The output is a morphism \(u_{\alpha,\beta}\):\(C(\alpha)\to C(\beta\circ\alpha)\) such that \(u_{\alpha,\beta}\circ\iota(\alpha)=\iota(\beta\circ\alpha)\circ\beta\) and \(\pi(\alpha)=\pi(\beta\circ\alpha)\circ u_{\alpha,\beta}\).

3.1-26 MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects
‣ MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism \(C(\beta\circ\alpha) \to C(\beta)\)

The arguments are two morphisms \(\alpha:A\to B\), \(\beta:B\to C\). The output is a morphism \(\iota_{\alpha,\beta}\):\(C(\beta\circ\alpha) \to C(\beta)\) such that \(\iota_{\alpha,\beta}\circ\iota(\beta\circ\alpha)=\iota(\beta)\) and \(\Sigma\alpha\circ\pi(\beta\circ\alpha)=\pi(\beta)\).

3.1-27 MorphismFromConeObjectByOctahedralAxiomWithGivenObjects
‣ MorphismFromConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism \(C(\beta) \to \Sigma C(\alpha)\)

The arguments are two morphisms \(\alpha:A\to B\), \(\beta:B\to C\). The output is a morphism \(\pi_{\alpha,\beta}\):\(C(\beta) \to \Sigma C(\alpha)\) such that \(\pi_{\alpha,\beta}=\Sigma \iota(\alpha) \circ\pi(\beta)\).

3.1-28 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects( s, alpha, beta, r )( operation )

Returns: a morphism \(C(\beta)\to C(u_{\alpha,\beta})\)

The arguments are an object \(s=C(\beta)\), a morphism \(\alpha:A\to B\), a morphism \(\beta:B\to C\) and an object \(r=C(u_{\alpha,\beta})\). The output is an isomorphism \(w_{\alpha,\beta}:C(\beta)\to C(u_{\alpha,\beta})\) such that \(w_{\alpha,\beta}\circ \iota_{\alpha,\beta}=\iota(u_{\alpha,\beta})\) and \(\pi_{\alpha,\beta}=\pi(u_{\alpha,\beta})\circ w_{\alpha,\beta}\). I.e., the following diagram is commutative:

3.1-29 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: a morphism \(C(\beta)\to C(u_{\alpha,\beta})\).

The arguments are two morphisms \(\alpha:A\to B\) and \(\beta:B\to C\). The output is an isomorphism \(C(\beta)\to C(u_{\alpha,\beta})\) such that \(w_{\alpha,\beta}\circ \iota_{\alpha,\beta}=\iota(u_{\alpha,\beta})\) and \(\pi_{\alpha,\beta}=\pi(u_{\alpha,\beta})\circ w_{\alpha,\beta}\).

3.1-30 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism \(C(u_{\alpha,\beta})\to C(\beta)\)

The arguments are two morphisms \(\alpha:A\to B\) and \(\beta:B\to C\). The output is ...

3.1-31 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom
‣ WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: a morphism \(C(u_{\alpha,\beta})\to C(\beta)\)

The arguments are two morphisms \(\alpha:A\to B\) and \(\beta:B\to C\). The output is ...

3.1-32 ConeObjectByRotationAxiom
‣ ConeObjectByRotationAxiom( alpha )( attribute )

Returns: an object \(\Sigma A\)

The argument is a morphism \(\alpha:A\to B\) The output is \(\Sigma A\).

3.1-33 DomainMorphismByRotationAxiom
‣ DomainMorphismByRotationAxiom( alpha )( attribute )

Returns: a morphism \(B\to C(\alpha)\).

The argument is a morphism \(\alpha:A\to B\). The output is \(\iota(\alpha):B\to C(\alpha)\).

3.1-34 MorphismIntoConeObjectByRotationAxiom
‣ MorphismIntoConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \(C(\alpha)\to \Sigma A\)

The argument is a morphism \(\alpha:A\to B\). The output is a morphism \(\pi(\alpha):C(\alpha)\to \Sigma A\).

3.1-35 MorphismFromConeObjectByRotationAxiom
‣ MorphismFromConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \(\Sigma A\to\Sigma B\)

The argument is a morphism \(\alpha:A\to B\). The output is a morphism \(-\Sigma \alpha:\Sigma A\to\Sigma B\).

3.1-36 WitnessIsomorphismIntoStandardConeObjectByRotationAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \(\Sigma A \to C(\iota(\alpha))\)

The argument is a morphism \(\alpha:A\to B\). The output is an isomorphism \(\Sigma A \to C(\iota(\alpha))\) such that \(?\circ\pi(\alpha)=\iota(\iota(\alpha))\) and \(\pi(\iota(\alpha))\circ ?=-\Sigma \alpha\).

3.1-37 WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \(\Sigma A \to C(\iota(\alpha))\)

The arguments are an object \(s=\Sigma A\), morphism \(\alpha:A\to B\) and an object \(r=C(\iota A )\). The output is an isomorphism \(\Sigma A \to C(\iota(\alpha))\) such that \(?\circ\pi(\alpha)=\iota(\iota(\alpha))\) and \(\pi(\iota(\alpha))\circ ?=-\Sigma \alpha\).

3.1-38 WitnessIsomorphismFromStandardConeObjectByRotationAxiom
‣ WitnessIsomorphismFromStandardConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \(C(\iota(\alpha))\to\Sigma A\)

The argument is a morphism \(\alpha:A\to B\). The output is an isomorphism \(C(\iota(\alpha))\to\Sigma A\) such that ???

3.1-39 WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \(C(\iota(\alpha))\to\Sigma A\)

The arguments are an object \(s=C(\iota(\alpha))\), morphism \(\alpha:A\to B\) and an object \(r=\Sigma A\). The output is an isomorphism \(C(\iota(\alpha))\to\Sigma A\) such that ???

3.1-40 ConeObjectByInverseRotationAxiom
‣ ConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: an object \(\Sigma A\)

The argument is a morphism \(\alpha:A\to B\) The output is \(\Sigma A\).

3.1-41 DomainMorphismByInverseRotationAxiom
‣ DomainMorphismByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \(B\to C(\alpha)\).

The argument is a morphism \(\alpha:A\to B\). The output is \(\iota(\alpha):B\to C(\alpha)\).

3.1-42 MorphismIntoConeObjectByInverseRotationAxiom
‣ MorphismIntoConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \(C(\alpha)\to \Sigma A\)

The argument is a morphism \(\alpha:A\to B\). The output is a morphism \(\pi(\alpha):C(\alpha)\to \Sigma A\).

3.1-43 MorphismFromConeObjectByInverseRotationAxiom
‣ MorphismFromConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \(\Sigma A\to\Sigma B\)

The argument is a morphism \(\alpha:A\to B\). The output is a morphism \(-\Sigma \alpha:\Sigma A\to\Sigma B\).

3.1-44 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \(\Sigma A \to C(\iota(\alpha))\)

The argument is a morphism \(\alpha:A\to B\). The output is an isomorphism \(\Sigma A \to C(\iota(\alpha))\) such that \(?\circ\pi(\alpha)=\iota(\iota(\alpha))\) and \(\pi(\iota(\alpha))\circ ?=-\Sigma \alpha\).

3.1-45 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \(\Sigma A \to C(\iota(\alpha))\)

The arguments are an object \(s=\Sigma A\), morphism \(\alpha:A\to B\) and an object \(r=C(\iota A )\). The output is an isomorphism \(\Sigma A \to C(\iota(\alpha))\) such that \(?\circ\pi(\alpha)=\iota(\iota(\alpha))\) and \(\pi(\iota(\alpha))\circ ?=-\Sigma \alpha\).

3.1-46 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom
‣ WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \(C(\iota(\alpha))\to\Sigma A\)

The argument is a morphism \(\alpha:A\to B\). The output is an isomorphism \(C(\iota(\alpha))\to\Sigma A\) such that ???

3.1-47 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \(C(\iota(\alpha))\to\Sigma A\)

The arguments are an object \(s=C(\iota(\alpha))\), morphism \(\alpha:A\to B\) and an object \(r=\Sigma A\). The output is an isomorphism \(C(\iota(\alpha))\to\Sigma A\) such that ???

3.1-48 ShiftExpandingIsomorphismWithGivenObjects
‣ ShiftExpandingIsomorphismWithGivenObjects( X, L, Y )( operation )

Returns: a morphism

The arguments are list \(L=[A_1,\dots,A_n]\) and two objects \(X=\Sigma \bigoplus_i A_i, Y=\bigoplus_i \Sigma A_i\). The output is the isomorphism \(X \rightarrow Y\) associated to \(\Sigma\).

3.1-49 ShiftExpandingIsomorphism
‣ ShiftExpandingIsomorphism( L )( operation )

Returns: a morphism

The argument is a list \(L=[A_1,\dots,A_n]\). The output is the isomorphism \(X \rightarrow Y\) associated to \(\Sigma\), where \(X=\Sigma \bigoplus_i A_i\) and \(Y=\bigoplus_i \Sigma A_i\)

3.1-50 ShiftFactoringIsomorphismWithGivenObjects
‣ ShiftFactoringIsomorphismWithGivenObjects( Y, L, X )( operation )

Returns: a morphism

The arguments are list \(L=[A_1,\dots,A_n]\) and two objects \(Y=\bigoplus_i \Sigma A_i, X=\Sigma \bigoplus_i A_i\). The output is the isomorphism \(Y \rightarrow X\) associated to \(\Sigma\).

3.1-51 ShiftFactoringIsomorphism
‣ ShiftFactoringIsomorphism( L )( operation )

Returns: a morphism

The argument is a list \(L=[A_1,\dots,A_n]\). The output is the isomorphism \(Y \rightarrow X\) associated to \(\Sigma\), where \(Y=\bigoplus_i \Sigma A_i\) and \(X=\Sigma \bigoplus_i A_i\).

3.1-52 InverseShiftExpandingIsomorphismWithGivenObjects
‣ InverseShiftExpandingIsomorphismWithGivenObjects( X, L, Y )( operation )

Returns: a morphism

The arguments are list \(L=[A_1,\dots,A_n]\) and two objects \(X=\Sigma^{-1} \bigoplus_i A_i, Y=\bigoplus_i \Sigma^{-1} A_i\). The output is the isomorphism \(X \rightarrow Y\) associated to \(\Sigma^{-1}\).

3.1-53 InverseShiftExpandingIsomorphism
‣ InverseShiftExpandingIsomorphism( L )( operation )

Returns: a morphism

The argument is a list \(L=[A_1,\dots,A_n]\). The output is the isomorphism \(X \rightarrow Y\) associated to \(\Sigma\), where \(X=\Sigma \bigoplus_i A_i\) and \(Y=\bigoplus_i \Sigma A_i\)

3.1-54 InverseShiftFactoringIsomorphismWithGivenObjects
‣ InverseShiftFactoringIsomorphismWithGivenObjects( Y, L, X )( operation )

Returns: a morphism

The arguments are list \(L=[A_1,\dots,A_n]\) and two objects \(Y=\bigoplus_i \Sigma^{-1} A_i, X=\Sigma^{-1} \bigoplus_i A_i\). The output is the isomorphism \(Y \rightarrow X\) associated to \(\Sigma^{-1}\).

3.1-55 InverseShiftFactoringIsomorphism
‣ InverseShiftFactoringIsomorphism( L )( operation )

Returns: a morphism

The argument is a list \(L=[A_1,\dots,A_n]\). The output is the isomorphism \(Y \rightarrow X\) associated to \(\Sigma^{-1}\), where \(Y=\bigoplus_i \Sigma^{-1} A_i\) and \(X=\Sigma^{-1} \bigoplus_i A_i\).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Ind

generated by GAPDoc2HTML