Goto Chapter: Top 1 2 3 4 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Triangulated Categories
 3.1 Categorical operations

  3.1-1 StandardConeObject

  3.1-2 MorphismIntoStandardConeObjectWithGivenStandardConeObject

  3.1-3 MorphismIntoStandardConeObject

  3.1-4 MorphismFromStandardConeObjectWithGivenObjects

  3.1-5 MorphismFromStandardConeObject

  3.1-6 ShiftOfObject

  3.1-7 ShiftOfMorphismWithGivenObjects

  3.1-8 ShiftOfMorphism

  3.1-9 Shift

  3.1-10 InverseShiftOfObject

  3.1-11 InverseShiftOfMorphismWithGivenObjects

  3.1-12 InverseShiftOfMorphism

  3.1-13 InverseShift

  3.1-14 UnitOfShiftAdjunctionWithGivenObject

  3.1-15 UnitOfShiftAdjunction

  3.1-16 InverseOfCounitOfShiftAdjunctionWithGivenObject

  3.1-17 InverseOfCounitOfShiftAdjunction

  3.1-18 InverseOfUnitOfShiftAdjunctionWithGivenObject

  3.1-19 InverseOfUnitOfShiftAdjunction

  3.1-20 CounitOfShiftAdjunctionWithGivenObject

  3.1-21 CounitOfShiftAdjunction

  3.1-22 MorphismBetweenStandardConeObjectsWithGivenObjects

  3.1-23 MorphismBetweenStandardConeObjects

  3.1-24 ConeObjectByOctahedralAxiom

  3.1-25 DomainMorphismByOctahedralAxiomWithGivenObjects

  3.1-26 MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects

  3.1-27 MorphismFromConeObjectByOctahedralAxiomWithGivenObjects

  3.1-28 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects

  3.1-29 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom

  3.1-30 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects

  3.1-31 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom

  3.1-32 ConeObjectByRotationAxiom

  3.1-33 DomainMorphismByRotationAxiom

  3.1-34 MorphismIntoConeObjectByRotationAxiom

  3.1-35 MorphismFromConeObjectByRotationAxiom

  3.1-36 WitnessIsomorphismIntoStandardConeObjectByRotationAxiom

  3.1-37 WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects

  3.1-38 WitnessIsomorphismFromStandardConeObjectByRotationAxiom

  3.1-39 WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects

  3.1-40 ConeObjectByInverseRotationAxiom

  3.1-41 DomainMorphismByInverseRotationAxiom

  3.1-42 MorphismIntoConeObjectByInverseRotationAxiom

  3.1-43 MorphismFromConeObjectByInverseRotationAxiom

  3.1-44 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom

  3.1-45 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects

  3.1-46 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom

  3.1-47 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects

  3.1-48 ShiftExpandingIsomorphismWithGivenObjects

  3.1-49 ShiftExpandingIsomorphism

  3.1-50 ShiftFactoringIsomorphismWithGivenObjects

  3.1-51 ShiftFactoringIsomorphism

  3.1-52 InverseShiftExpandingIsomorphismWithGivenObjects

  3.1-53 InverseShiftExpandingIsomorphism

  3.1-54 InverseShiftFactoringIsomorphismWithGivenObjects

  3.1-55 InverseShiftFactoringIsomorphism

3 Triangulated Categories

3.1 Categorical operations

3.1-1 StandardConeObject
‣ StandardConeObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha:A\to B in a triangulated category. The output is the standard cone object C(\alpha) of \alpha.

3.1-2 MorphismIntoStandardConeObjectWithGivenStandardConeObject
‣ MorphismIntoStandardConeObjectWithGivenStandardConeObject( alpha, C )( operation )

Returns: a morphism \iota(\alpha):B\to C(\alpha)

The arguments are a morphism \alpha: A \to B in a triangulated category and an object C:=C(\alpha). The output is the morphism \iota(\alpha):B\to C(\alpha) into the standard cone object C(\alpha).

3.1-3 MorphismIntoStandardConeObject
‣ MorphismIntoStandardConeObject( alpha )( attribute )

Returns: a morphism \iota(\alpha):B\to C(\alpha)

The argument is a morphism \alpha: A \to B in a triangulated category. The output is the morphism \iota(\alpha):B\to C(\alpha) into the standard cone object C(\alpha).

3.1-4 MorphismFromStandardConeObjectWithGivenObjects
‣ MorphismFromStandardConeObjectWithGivenObjects( alpha, C )( operation )

Returns: a morphism \pi(\alpha):C(\alpha)\to\Sigma A

The arguments are a morphism \alpha: A \to B in a triangulated category and an object C:=C(\alpha). The output is the morphism \pi(\alpha):C(\alpha)\to\Sigma A from the standard cone object C(\alpha).

3.1-5 MorphismFromStandardConeObject
‣ MorphismFromStandardConeObject( alpha, C )( attribute )

Returns: a morphism \pi(\alpha):C(\alpha)\to\Sigma A

The argument is a morphism \alpha: A \to B in a triangulated category. The output is the morphism \pi(\alpha):C(\alpha)\to\Sigma A from the standard cone object C(\alpha).

3.1-6 ShiftOfObject
‣ ShiftOfObject( A )( attribute )

Returns: \Sigma A

The argument is an object A in a triangulated category \mathcal{T}. The output is \Sigma A.

3.1-7 ShiftOfMorphismWithGivenObjects
‣ ShiftOfMorphismWithGivenObjects( sigma_A, alpha, sigma_B )( operation )

Returns: \Sigma \alpha:\Sigma A \to \Sigma B

The arguments are an object \Sigma A, a morphism \alpha:A\to B and an object \Sigma B in a triangulated category \mathcal{T}. The output is \Sigma \alpha:\Sigma A \to \Sigma B.

3.1-8 ShiftOfMorphism
‣ ShiftOfMorphism( alpha )( attribute )

Returns: \Sigma \alpha:\Sigma A \to \Sigma B

The argument is a morphism \alpha:A\to B in a triangulated category \mathcal{T}. The output is \Sigma \alpha:\Sigma A \to \Sigma B.

3.1-9 Shift
‣ Shift( c )( operation )

Returns: \Sigma c

This is a convenience method to apply the shift functor on objects or morphisms. The operation delegates to either ShiftOfObject or ShiftOfMorphism.

3.1-10 InverseShiftOfObject
‣ InverseShiftOfObject( A )( operation )

Returns: \Sigma^{-1} A

The argument is an object A in a triangulated category \mathcal{T}. The output is \Sigma^{-1} A.

3.1-11 InverseShiftOfMorphismWithGivenObjects
‣ InverseShiftOfMorphismWithGivenObjects( rev_sigma_A, alpha, rev_sigma_B )( operation )

Returns: \Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B

The arguments are an object \Sigma^{-1} A, a morphism \alpha:A\to B and an object \Sigma^{-1} B in a triangulated category \mathcal{T}. The output is \Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B.

3.1-12 InverseShiftOfMorphism
‣ InverseShiftOfMorphism( alpha )( attribute )

Returns: \Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B

The argument is a morphism \alpha:A\to B in a triangulated category \mathcal{T}. The output is \Sigma^{-1} \alpha:\Sigma^{-1} A \to \Sigma^{-1} B.

3.1-13 InverseShift
‣ InverseShift( c )( operation )

Returns: \Sigma^{-1} c

This is a convenience method to apply the inverse shift functor on objects or morphisms. The operation delegates to either InverseShiftOfObject or InverseShiftOfMorphism.

3.1-14 UnitOfShiftAdjunctionWithGivenObject
‣ UnitOfShiftAdjunctionWithGivenObject( A, sigma_o_rev_sigma_A )( operation )

Returns: a morphism A \to (\Sigma \circ \Sigma^{-1}) A

The arguments are two objects A and (\Sigma \circ \Sigma^{-1}) A in a triangulated category \mathcal{T}. The output is the natural isomorphism A \to (\Sigma \circ \Sigma^{-1}) A

3.1-15 UnitOfShiftAdjunction
‣ UnitOfShiftAdjunction( A )( attribute )

Returns: a morphism A \to (\Sigma \circ \Sigma^{-1}) A

The argument is an object A in a triangulated category \mathcal{T}. The output is the natural isomorphism A \to (\Sigma \circ \Sigma^{-1}) A

3.1-16 InverseOfCounitOfShiftAdjunctionWithGivenObject
‣ InverseOfCounitOfShiftAdjunctionWithGivenObject( A, rev_sigma_o_sigma_A )( operation )

Returns: a morphism A \to (\Sigma^{-1} \circ \Sigma) A

The arguments are two objects A and (\Sigma^{-1} \circ \Sigma) A in a triangulated category \mathcal{T}. The output is the natural isomorphism A \to (\Sigma^{-1} \circ \Sigma) A

3.1-17 InverseOfCounitOfShiftAdjunction
‣ InverseOfCounitOfShiftAdjunction( A )( attribute )

Returns: a morphism A \to (\Sigma^{-1} \circ \Sigma) A

The argument is an object A in a triangulated category \mathcal{T}. The output is the natural isomorphism A \to (\Sigma^{-1} \circ \Sigma) A

3.1-18 InverseOfUnitOfShiftAdjunctionWithGivenObject
‣ InverseOfUnitOfShiftAdjunctionWithGivenObject( A, sigma_o_rev_sigma_A )( operation )

Returns: a morphism (\Sigma \circ \Sigma^{-1}) A \to A

The arguments are two objects A and (\Sigma \circ \Sigma^{-1}) A in a triangulated category \mathcal{T}. The output is the natural isomorphism (\Sigma \circ \Sigma^{-1}) A \to A

3.1-19 InverseOfUnitOfShiftAdjunction
‣ InverseOfUnitOfShiftAdjunction( A )( attribute )

Returns: a morphism (\Sigma \circ \Sigma^{-1}) A \to A

The argument in an objects A in a triangulated category \mathcal{T}. The output is the natural isomorphism (\Sigma \circ \Sigma^{-1}) A \to A

3.1-20 CounitOfShiftAdjunctionWithGivenObject
‣ CounitOfShiftAdjunctionWithGivenObject( A, rev_sigma_o_sigma_A )( operation )

Returns: a morphism (\Sigma^{-1} \circ \Sigma) A \to A

The arguments are two objects A and (\Sigma^{-1} \circ \Sigma) A in a triangulated category \mathcal{T}. The output is the natural isomorphism (\Sigma^{-1} \circ \Sigma) A \to A

3.1-21 CounitOfShiftAdjunction
‣ CounitOfShiftAdjunction( A )( attribute )

Returns: a morphism (\Sigma^{-1} \circ \Sigma) A \to A

The argument is an object A in a triangulated category \mathcal{T}. The output is the natural isomorphism (\Sigma^{-1} \circ \Sigma) A \to A

3.1-22 MorphismBetweenStandardConeObjectsWithGivenObjects
‣ MorphismBetweenStandardConeObjectsWithGivenObjects( C_alpha_1, list, C_alpha_2 )( operation )

Returns: a morphism C(\alpha_1) \to C(\alpha_2)

The arguments are an object C_{\alpha_1}, a list of four morphisms \alpha_1:A_1\to B_1, u:A_1\to A_2, v:B_1\to B_2, \alpha_2:A_2\to B_2 and an object C_{\alpha_2} such that C_{\alpha_1}:=C(\alpha_1), C_{\alpha_2}:=C(\alpha_2) and v\circ \alpha_1=\alpha_2\circ u. The output is a morphism w:C(\alpha_1) \to C(\alpha_2) such that w\circ \iota(\alpha_1)=\iota(\alpha_2)\circ v and \Sigma u\circ\pi(\alpha_1)=\pi(\alpha_2)\circ w.

3.1-23 MorphismBetweenStandardConeObjects
‣ MorphismBetweenStandardConeObjects( alpha_1, u, v, alpha_2 )( operation )

Returns: a morphism C(\alpha_1) \to C(\alpha_2)

The arguments are morphisms \alpha_1:A_1\to B_1, u:A_1\to A_2, v:B_1\to B_2, \alpha_2:A_2\to B_2 such that v\circ \alpha_1=\alpha_2\circ u. The output is a morphism w:C(\alpha_1) \to C(\alpha_2) such that w\circ \iota(\alpha_1)=\iota(\alpha_2)\circ v and \Sigma u\circ\pi(\alpha_1)=\pi(\alpha_2)\circ w.

3.1-24 ConeObjectByOctahedralAxiom
‣ ConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: C(\beta)

The arguments are two morphisms \alpha:A\to B, \beta:B\to C. The output is the standard cone object C(\beta).

3.1-25 DomainMorphismByOctahedralAxiomWithGivenObjects
‣ DomainMorphismByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism u_{\alpha,\beta}:C(\alpha)\to C(\beta\circ\alpha)

The arguments are two morphisms \alpha:A\to B, \beta:B\to C. The output is a morphism u_{\alpha,\beta}:C(\alpha)\to C(\beta\circ\alpha) such that u_{\alpha,\beta}\circ\iota(\alpha)=\iota(\beta\circ\alpha)\circ\beta and \pi(\alpha)=\pi(\beta\circ\alpha)\circ u_{\alpha,\beta}.

3.1-26 MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects
‣ MorphismIntoConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism C(\beta\circ\alpha) \to C(\beta)

The arguments are two morphisms \alpha:A\to B, \beta:B\to C. The output is a morphism \iota_{\alpha,\beta}:C(\beta\circ\alpha) \to C(\beta) such that \iota_{\alpha,\beta}\circ\iota(\beta\circ\alpha)=\iota(\beta) and \Sigma\alpha\circ\pi(\beta\circ\alpha)=\pi(\beta).

3.1-27 MorphismFromConeObjectByOctahedralAxiomWithGivenObjects
‣ MorphismFromConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism C(\beta) \to \Sigma C(\alpha)

The arguments are two morphisms \alpha:A\to B, \beta:B\to C. The output is a morphism \pi_{\alpha,\beta}:C(\beta) \to \Sigma C(\alpha) such that \pi_{\alpha,\beta}=\Sigma \iota(\alpha) \circ\pi(\beta).

3.1-28 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiomWithGivenObjects( s, alpha, beta, r )( operation )

Returns: a morphism C(\beta)\to C(u_{\alpha,\beta})

The arguments are an object s=C(\beta), a morphism \alpha:A\to B, a morphism \beta:B\to C and an object r=C(u_{\alpha,\beta}). The output is an isomorphism w_{\alpha,\beta}:C(\beta)\to C(u_{\alpha,\beta}) such that w_{\alpha,\beta}\circ \iota_{\alpha,\beta}=\iota(u_{\alpha,\beta}) and \pi_{\alpha,\beta}=\pi(u_{\alpha,\beta})\circ w_{\alpha,\beta}. I.e., the following diagram is commutative:

3.1-29 WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: a morphism C(\beta)\to C(u_{\alpha,\beta}).

The arguments are two morphisms \alpha:A\to B and \beta:B\to C. The output is an isomorphism C(\beta)\to C(u_{\alpha,\beta}) such that w_{\alpha,\beta}\circ \iota_{\alpha,\beta}=\iota(u_{\alpha,\beta}) and \pi_{\alpha,\beta}=\pi(u_{\alpha,\beta})\circ w_{\alpha,\beta}.

3.1-30 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByOctahedralAxiomWithGivenObjects( alpha, beta )( operation )

Returns: a morphism C(u_{\alpha,\beta})\to C(\beta)

The arguments are two morphisms \alpha:A\to B and \beta:B\to C. The output is ...

3.1-31 WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom
‣ WitnessIsomorphismFromStandardConeObjectByOctahedralAxiom( alpha, beta )( operation )

Returns: a morphism C(u_{\alpha,\beta})\to C(\beta)

The arguments are two morphisms \alpha:A\to B and \beta:B\to C. The output is ...

3.1-32 ConeObjectByRotationAxiom
‣ ConeObjectByRotationAxiom( alpha )( attribute )

Returns: an object \Sigma A

The argument is a morphism \alpha:A\to B The output is \Sigma A.

3.1-33 DomainMorphismByRotationAxiom
‣ DomainMorphismByRotationAxiom( alpha )( attribute )

Returns: a morphism B\to C(\alpha).

The argument is a morphism \alpha:A\to B. The output is \iota(\alpha):B\to C(\alpha).

3.1-34 MorphismIntoConeObjectByRotationAxiom
‣ MorphismIntoConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism C(\alpha)\to \Sigma A

The argument is a morphism \alpha:A\to B. The output is a morphism \pi(\alpha):C(\alpha)\to \Sigma A.

3.1-35 MorphismFromConeObjectByRotationAxiom
‣ MorphismFromConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \Sigma A\to\Sigma B

The argument is a morphism \alpha:A\to B. The output is a morphism -\Sigma \alpha:\Sigma A\to\Sigma B.

3.1-36 WitnessIsomorphismIntoStandardConeObjectByRotationAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism \Sigma A \to C(\iota(\alpha))

The argument is a morphism \alpha:A\to B. The output is an isomorphism \Sigma A \to C(\iota(\alpha)) such that ?\circ\pi(\alpha)=\iota(\iota(\alpha)) and \pi(\iota(\alpha))\circ ?=-\Sigma \alpha.

3.1-37 WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \Sigma A \to C(\iota(\alpha))

The arguments are an object s=\Sigma A, morphism \alpha:A\to B and an object r=C(\iota A ). The output is an isomorphism \Sigma A \to C(\iota(\alpha)) such that ?\circ\pi(\alpha)=\iota(\iota(\alpha)) and \pi(\iota(\alpha))\circ ?=-\Sigma \alpha.

3.1-38 WitnessIsomorphismFromStandardConeObjectByRotationAxiom
‣ WitnessIsomorphismFromStandardConeObjectByRotationAxiom( alpha )( attribute )

Returns: a morphism C(\iota(\alpha))\to\Sigma A

The argument is a morphism \alpha:A\to B. The output is an isomorphism C(\iota(\alpha))\to\Sigma A such that ???

3.1-39 WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism C(\iota(\alpha))\to\Sigma A

The arguments are an object s=C(\iota(\alpha)), morphism \alpha:A\to B and an object r=\Sigma A. The output is an isomorphism C(\iota(\alpha))\to\Sigma A such that ???

3.1-40 ConeObjectByInverseRotationAxiom
‣ ConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: an object \Sigma A

The argument is a morphism \alpha:A\to B The output is \Sigma A.

3.1-41 DomainMorphismByInverseRotationAxiom
‣ DomainMorphismByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism B\to C(\alpha).

The argument is a morphism \alpha:A\to B. The output is \iota(\alpha):B\to C(\alpha).

3.1-42 MorphismIntoConeObjectByInverseRotationAxiom
‣ MorphismIntoConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism C(\alpha)\to \Sigma A

The argument is a morphism \alpha:A\to B. The output is a morphism \pi(\alpha):C(\alpha)\to \Sigma A.

3.1-43 MorphismFromConeObjectByInverseRotationAxiom
‣ MorphismFromConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \Sigma A\to\Sigma B

The argument is a morphism \alpha:A\to B. The output is a morphism -\Sigma \alpha:\Sigma A\to\Sigma B.

3.1-44 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom
‣ WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism \Sigma A \to C(\iota(\alpha))

The argument is a morphism \alpha:A\to B. The output is an isomorphism \Sigma A \to C(\iota(\alpha)) such that ?\circ\pi(\alpha)=\iota(\iota(\alpha)) and \pi(\iota(\alpha))\circ ?=-\Sigma \alpha.

3.1-45 WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects
‣ WitnessIsomorphismIntoStandardConeObjectByInverseRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism \Sigma A \to C(\iota(\alpha))

The arguments are an object s=\Sigma A, morphism \alpha:A\to B and an object r=C(\iota A ). The output is an isomorphism \Sigma A \to C(\iota(\alpha)) such that ?\circ\pi(\alpha)=\iota(\iota(\alpha)) and \pi(\iota(\alpha))\circ ?=-\Sigma \alpha.

3.1-46 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom
‣ WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiom( alpha )( attribute )

Returns: a morphism C(\iota(\alpha))\to\Sigma A

The argument is a morphism \alpha:A\to B. The output is an isomorphism C(\iota(\alpha))\to\Sigma A such that ???

3.1-47 WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects
‣ WitnessIsomorphismFromStandardConeObjectByInverseRotationAxiomWithGivenObjects( s, alpha, r )( operation )

Returns: a morphism C(\iota(\alpha))\to\Sigma A

The arguments are an object s=C(\iota(\alpha)), morphism \alpha:A\to B and an object r=\Sigma A. The output is an isomorphism C(\iota(\alpha))\to\Sigma A such that ???

3.1-48 ShiftExpandingIsomorphismWithGivenObjects
‣ ShiftExpandingIsomorphismWithGivenObjects( X, L, Y )( operation )

Returns: a morphism

The arguments are list L=[A_1,\dots,A_n] and two objects X=\Sigma \bigoplus_i A_i, Y=\bigoplus_i \Sigma A_i. The output is the isomorphism X \rightarrow Y associated to \Sigma.

3.1-49 ShiftExpandingIsomorphism
‣ ShiftExpandingIsomorphism( L )( operation )

Returns: a morphism

The argument is a list L=[A_1,\dots,A_n]. The output is the isomorphism X \rightarrow Y associated to \Sigma, where X=\Sigma \bigoplus_i A_i and Y=\bigoplus_i \Sigma A_i

3.1-50 ShiftFactoringIsomorphismWithGivenObjects
‣ ShiftFactoringIsomorphismWithGivenObjects( Y, L, X )( operation )

Returns: a morphism

The arguments are list L=[A_1,\dots,A_n] and two objects Y=\bigoplus_i \Sigma A_i, X=\Sigma \bigoplus_i A_i. The output is the isomorphism Y \rightarrow X associated to \Sigma.

3.1-51 ShiftFactoringIsomorphism
‣ ShiftFactoringIsomorphism( L )( operation )

Returns: a morphism

The argument is a list L=[A_1,\dots,A_n]. The output is the isomorphism Y \rightarrow X associated to \Sigma, where Y=\bigoplus_i \Sigma A_i and X=\Sigma \bigoplus_i A_i.

3.1-52 InverseShiftExpandingIsomorphismWithGivenObjects
‣ InverseShiftExpandingIsomorphismWithGivenObjects( X, L, Y )( operation )

Returns: a morphism

The arguments are list L=[A_1,\dots,A_n] and two objects X=\Sigma^{-1} \bigoplus_i A_i, Y=\bigoplus_i \Sigma^{-1} A_i. The output is the isomorphism X \rightarrow Y associated to \Sigma^{-1}.

3.1-53 InverseShiftExpandingIsomorphism
‣ InverseShiftExpandingIsomorphism( L )( operation )

Returns: a morphism

The argument is a list L=[A_1,\dots,A_n]. The output is the isomorphism X \rightarrow Y associated to \Sigma, where X=\Sigma \bigoplus_i A_i and Y=\bigoplus_i \Sigma A_i

3.1-54 InverseShiftFactoringIsomorphismWithGivenObjects
‣ InverseShiftFactoringIsomorphismWithGivenObjects( Y, L, X )( operation )

Returns: a morphism

The arguments are list L=[A_1,\dots,A_n] and two objects Y=\bigoplus_i \Sigma^{-1} A_i, X=\Sigma^{-1} \bigoplus_i A_i. The output is the isomorphism Y \rightarrow X associated to \Sigma^{-1}.

3.1-55 InverseShiftFactoringIsomorphism
‣ InverseShiftFactoringIsomorphism( L )( operation )

Returns: a morphism

The argument is a list L=[A_1,\dots,A_n]. The output is the isomorphism Y \rightarrow X associated to \Sigma^{-1}, where Y=\bigoplus_i \Sigma^{-1} A_i and X=\Sigma^{-1} \bigoplus_i A_i.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Ind

generated by GAPDoc2HTML