‣ ShiftFunctor ( T ) | ( operation ) |
Returns: a functor \mathcal{T}\to\mathcal{T}
The argument is a triangulated category \mathcal{T}. The output is the shift autoequivalence \Sigma:\mathcal{T}\to\mathcal{T}.
‣ InverseShiftFunctor ( T ) | ( attribute ) |
Returns: a functor \mathcal{T}\to\mathcal{T}
The argument is a triangulated category \mathcal{T}. The output is the auto-equivalence \Sigma^{-1}:\mathcal{T}\to\mathcal{T}.
‣ UnitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma\circ\Sigma^{-1}
The argument is a triangulated category \mathcal{T}. The output is the natural isomorphism \eta:\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma\circ\Sigma^{-1}.
‣ InverseOfUnitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural isomorphism \Sigma\circ\Sigma^{-1}\Rightarrow\mathrm{Id}_{\mathcal{T}}
The argument is a triangulated category \mathcal{T}. The output is the natural isomorphism \eta:\Sigma\circ\Sigma^{-1}\Rightarrow\mathrm{Id}_{\mathcal{T}}.
‣ CounitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \Sigma^{-1}\circ\Sigma\Rightarrow\mathrm{Id}_{\mathcal{T}}
The argument is a triangulated category \mathcal{T}. The output is the natural isomorphism \eta:\Sigma^{-1}\circ\Sigma\Rightarrow\mathrm{Id}_{\mathcal{T}}.
‣ InverseOfCounitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma^{-1}\circ\Sigma
The argument is a triangulated category \mathcal{T}. The output is the natural isomorphism \eta:\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma^{-1}\circ\Sigma.
‣ CommutativityNaturalTransformationWithShiftFunctor ( F ) | ( attribute ) |
Returns: a natural transformation F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F
The argument is an exact functor F:\mathcal{T}_1\to\mathcal{T}_2 between triangulated categories. The output is a natural isomorphism \eta:F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F.
‣ ExtendFunctorToCategoryOfTriangles ( F ) | ( attribute ) |
Returns: a natural isomorphism F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F
The argument is an exact functor F:\mathcal{T}_1\to\mathcal{T}_2 between triangulated categories, for which the attribute CommutativityNaturalIsomorphismForExactFunctor
has already been set. The output is the extension functor of F to the categories of triangles over \mathcal{T}_1 and \mathcal{T}_2.
‣ RotationFunctor ( T, b ) | ( operation ) |
Returns: an endofunctor T\to T
The arguments are a category of exact triangles T of some triangulated category and a boolian b. The output is the rotation endofunctor on T. If b = true
, then the functor computes witnesses when applied on objects.
‣ InverseRotationFunctor ( T, b ) | ( operation ) |
Returns: an endofunctor T\to T
The arguments are a category of exact triangles T of some triangulated category and a boolian b. The output is the inverse rotation endofunctor on T. If b = true
, then the functor computes witnesses when applied on objects.
generated by GAPDoc2HTML