‣ ShiftFunctor ( T ) | ( operation ) |
Returns: a functor \(\mathcal{T}\to\mathcal{T}\)
The argument is a triangulated category \(\mathcal{T}\). The output is the shift autoequivalence \(\Sigma:\mathcal{T}\to\mathcal{T}\).
‣ InverseShiftFunctor ( T ) | ( attribute ) |
Returns: a functor \(\mathcal{T}\to\mathcal{T}\)
The argument is a triangulated category \(\mathcal{T}\). The output is the auto-equivalence \(\Sigma^{-1}:\mathcal{T}\to\mathcal{T}\).
‣ UnitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma\circ\Sigma^{-1}\)
The argument is a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(\eta:\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma\circ\Sigma^{-1}\).
‣ InverseOfUnitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural isomorphism \(\Sigma\circ\Sigma^{-1}\Rightarrow\mathrm{Id}_{\mathcal{T}}\)
The argument is a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(\eta:\Sigma\circ\Sigma^{-1}\Rightarrow\mathrm{Id}_{\mathcal{T}}\).
‣ CounitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \(\Sigma^{-1}\circ\Sigma\Rightarrow\mathrm{Id}_{\mathcal{T}}\)
The argument is a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(\eta:\Sigma^{-1}\circ\Sigma\Rightarrow\mathrm{Id}_{\mathcal{T}}\).
‣ InverseOfCounitOfShiftAdjunction ( T ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma^{-1}\circ\Sigma\)
The argument is a triangulated category \(\mathcal{T}\). The output is the natural isomorphism \(\eta:\mathrm{Id}_{\mathcal{T}}\Rightarrow\Sigma^{-1}\circ\Sigma\).
‣ CommutativityNaturalTransformationWithShiftFunctor ( F ) | ( attribute ) |
Returns: a natural transformation \(F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F\)
The argument is an exact functor \(F:\mathcal{T}_1\to\mathcal{T}_2\) between triangulated categories. The output is a natural isomorphism \(\eta:F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F\).
‣ ExtendFunctorToCategoryOfTriangles ( F ) | ( attribute ) |
Returns: a natural isomorphism \(F\circ \Sigma_{\mathcal{T}_1} \Rightarrow \Sigma_{\mathcal{T}_2} \circ F\)
The argument is an exact functor \(F:\mathcal{T}_1\to\mathcal{T}_2\) between triangulated categories, for which the attribute CommutativityNaturalIsomorphismForExactFunctor
has already been set. The output is the extension functor of \(F\) to the categories of triangles over \(\mathcal{T}_1\) and \(\mathcal{T}_2\).
‣ RotationFunctor ( T, b ) | ( operation ) |
Returns: an endofunctor \(T\to T\)
The arguments are a category of exact triangles \(T\) of some triangulated category and a boolian \(b\). The output is the rotation endofunctor on \(T\). If \(b\) = true
, then the functor computes witnesses when applied on objects.
‣ InverseRotationFunctor ( T, b ) | ( operation ) |
Returns: an endofunctor \(T\to T\)
The arguments are a category of exact triangles \(T\) of some triangulated category and a boolian \(b\). The output is the inverse rotation endofunctor on \(T\). If \(b\) = true
, then the functor computes witnesses when applied on objects.
generated by GAPDoc2HTML