Goto Chapter: Top 1 2 3 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Tools
 1.1 Tools
 1.2 Functors
 1.3 Cell as evaluatable string

1 Tools

1.1 Tools

1.1-1 SET_RANGE_CATEGORY_Of_HOMOMORPHISM_STRUCTURE
‣ SET_RANGE_CATEGORY_Of_HOMOMORPHISM_STRUCTURE( C, H )( operation )

The input are two categories C and H. There is not output but the following side effects are applied to C:

Furthermore, if IsCategoryWithDecidableLifts( H ) then

An error is raised if RangeCategoryOfHomomorphismStructure( C ) is already set.

1.1-2 ListKnownDoctrines
‣ ListKnownDoctrines( arg )( function )

Returns: a list

The function takes no arguments and returns the list of known doctrines.

gap> LoadPackage( "FunctorCategories", false );
true
gap> ListKnownDoctrines( );
[ "IsCapCategory", "IsEnrichedOverCommutativeRegularSemigroup",
  "IsAbCategory", "IsCategoryWithTerminalObject", "IsCartesianCategory",
  "IsCategoryWithInitialObject", "IsCocartesianCategory",
  "IsBicartesianCategory", "IsCategoryWithZeroObject", "IsAdditiveCategory",
  "IsCategoryWithCoequalizers", "IsCategoryWithCokernels",
  "IsCategoryWithEqualizers", "IsCategoryWithKernels",
  "IsFiniteCocompleteCategory", "IsFiniteCompleteCategory",
  "IsFiniteBicompleteCategory", "IsPreAbelianCategory", "IsAbelianCategory",
  "IsAbelianCategoryWithEnoughInjectives",
  "IsAbelianCategoryWithEnoughProjectives", "IsMonoidalCategory",
  "IsAdditiveMonoidalCategory", "IsCartesianClosedCategory",
  "IsDistributiveCategory", "IsBicartesianClosedCategory",
  "IsCocartesianCoclosedCategory", "IsCodistributiveCategory",
  "IsBicartesianCoclosedCategory", "IsThinCategory", "IsCartesianProset",
  "IsCocartesianProset", "IsBicartesianProset",
  "IsDistributiveBicartesianProset", "IsCoHeytingAlgebroid",
  "IsHeytingAlgebroid", "IsBiHeytingAlgebroid", "IsPosetCategory",
  "IsJoinSemiLattice", "IsMeetSemiLattice", "IsLattice",
  "IsDistributiveLattice", "IsCoHeytingAlgebra", "IsHeytingAlgebra",
  "IsBiHeytingAlgebra", "IsBooleanAlgebroid", "IsBooleanAlgebra",
  "IsSymmetricMonoidalCategory", "IsCategoryWithDecidableColifts",
  "IsCategoryWithDecidableLifts", "IsClosedMonoidalCategory",
  "IsMonoidalProset", "IsClosedMonoidalProset", "IsMonoidalPoset",
  "IsClosedMonoidalPoset", "IsMonoidalLattice", "IsClosedMonoidalLattice",
  "IsCoclosedMonoidalCategory", "IsCoclosedMonoidalProset",
  "IsCoclosedMonoidalPoset", "IsCoclosedMonoidalLattice", "IsElementaryTopos",
  "IsEquippedWithHomomorphismStructure", "IsObjectFiniteCategory",
  "IsFinitelyPresentedCategory", "IsFiniteCategory",
  "IsLeftClosedMonoidalCategory", "IsLeftCoclosedMonoidalCategory",
  "IsLinearCategoryOverCommutativeRing",
  "IsLinearCategoryOverCommutativeRingWithFinitelyGeneratedFreeExternalHoms",
  "IsSymmetricClosedMonoidalCategory",
  "IsRigidSymmetricClosedMonoidalCategory",
  "IsSymmetricCoclosedMonoidalCategory",
  "IsRigidSymmetricCoclosedMonoidalCategory", "IsSymmetricMonoidalProset",
  "IsSymmetricClosedMonoidalProset", "IsSymmetricMonoidalPoset",
  "IsSymmetricClosedMonoidalPoset", "IsSymmetricMonoidalLattice",
  "IsSymmetricClosedMonoidalLattice", "IsSymmetricCoclosedMonoidalProset",
  "IsSymmetricCoclosedMonoidalPoset", "IsSymmetricCoclosedMonoidalLattice" ]
gap> # @drop_example_in_Julia

1.1-3 DummyCategoryInDoctrines
‣ DummyCategoryInDoctrines( doctrine_names )( operation )

Returns: a CAP category

The argument is a nonempty list doctrine_names of strings of doctrine names and the output is a dummy category created using DummyCategory which lies in the given doctrine. If the option minimal is set to true, then only a logically minimal subset of the doctrines is considered.

gap> LoadPackage( "ToolsForCategoricalTowers", false );
true
gap> D1 := DummyCategoryInDoctrines( [ "IsAbCategory" ] );
DummyCategoryInDoctrines( [ "IsAbCategory" ] )
gap> Display( D1 );
A CAP category with name DummyCategoryInDoctrines( [ "IsAbCategory" ] ):

16 primitive operations were used to derive 28 operations for this category \
which algorithmically
* IsAbCategory
gap> D2 := DummyCategoryInDoctrines( [ "IsAbCategory", "IsAbelianCategory" ] );
DummyCategoryInDoctrines( [ "IsAbelianCategory" ] )
gap> Display( D2 );
A CAP category with name DummyCategoryInDoctrines( [ "IsAbelianCategory" ] ):

33 primitive operations were used to derive 291 operations for this category \
which algorithmically
* IsAbelianCategory
gap> D3 := DummyCategoryInDoctrines(
>               [ "IsCategoryWithInitialObject",
>                 "IsCategoryWithTerminalObject",
>                 "IsCategoryWithZeroObject" ] );
DummyCategoryInDoctrines( \
[ "IsCategoryWithInitialObject", "IsCategoryWithTerminalObject", "IsCategoryWithZeroObject" ] )
gap> Display( D3 );
A CAP category with name DummyCategoryInDoctrines( \
[ "IsCategoryWithInitialObject", "IsCategoryWithTerminalObject", "IsCategoryWithZeroObject" ] ):

18 primitive operations were used to derive 41 operations for this category which algorithmically
* IsCategoryWithZeroObject
gap> D4 := DummyCategoryInDoctrines(
>               [ "IsCategoryWithInitialObject",
>                 "IsCategoryWithTerminalObject",
>                 "IsCategoryWithZeroObject" ] : minimal := true );
DummyCategoryInDoctrines( [ "IsCategoryWithZeroObject" ] )
gap> Display( D4 );
A CAP category with name DummyCategoryInDoctrines( \
[ "IsCategoryWithZeroObject" ] ):

14 primitive operations were used to derive 41 operations for this category \
which algorithmically
* IsCategoryWithZeroObject

1.2 Functors

1.2-1 CovariantHomFunctor
‣ CovariantHomFunctor( o )( attribute )

Returns: a CAP functor

The input is an object o in a category \(C\). The output is the covariant Hom functor \(\mathrm{Hom}\)(o,-) from the category \(C\) to RangeCategoryOfHomomorphismStructure( C ).

1.2-2 GlobalSectionFunctor
‣ GlobalSectionFunctor( C )( attribute )

Returns: a CAP functor

Returns the global section functor \(\mathrm{Hom}(1,-)\) from the category C with terminal object \(1\) to RangeCategoryOfHomomorphismStructure( C ).

1.3 Cell as evaluatable string

1.3-1 DatumOfCellAsEvaluatableString
‣ DatumOfCellAsEvaluatableString( c, list_of_evaluatable_strings )( operation )

Returns: a string

The arguments is a category cell c and a list list_of_evaluatable_strings of string all which must be evalutable with EvalString. The output is a string str such that

The output string must, apart from the brackets, only consist of the substrings "ObjectConstructor", "MorphismConstructor" and the string in list_of_evaluatable_strings.

1.3-2 CellAsEvaluatableString
‣ CellAsEvaluatableString( c, list_of_evaluatable_strings )( operation )

Returns: a string

The arguments is a category cell c and a list list_of_evaluatable_strings of string all which must be evalutable with EvalString. The output is a string str such that

The output string must, apart from the brackets, only consist of the substrings "ObjectConstructor", "MorphismConstructor" and the string in list_of_evaluatable_strings.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 Ind

generated by GAPDoc2HTML