Goto Chapter: Top 1 2 3 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Futher CAP operations
 2.1 MorphismBetweenCoproducts and MorphismBetweenDirectProducts
 2.2 Projective covers and injective envelopes
 2.3 IsWeakTerminal and IsWeakInitial
 2.4 RelativeLift/RelativeColift
 2.5 Biased relative weak fiber product
 2.6 EmbeddingOfSumOfImagesOfAllMorphisms
 2.7 Systems of homogeneous linear equations in linear categories
 2.8 Limit
 2.9 Colimit
 2.10 Add-methods

  2.10-1 AddBasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory

  2.10-2 AddBasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory

  2.10-3 AddBiasedRelativeWeakFiberProduct

  2.10-4 AddColimit

  2.10-5 AddEmbeddingOfSumOfImagesOfAllMorphisms

  2.10-6 AddInjectionOfCofactorOfColimit

  2.10-7 AddInjectionOfCofactorOfColimitWithGivenColimit

  2.10-8 AddIsWeakInitial

  2.10-9 AddIsWeakTerminal

  2.10-10 AddLimit

  2.10-11 AddMereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory

  2.10-12 AddMereExistenceOfUniqueSolutionOfLinearSystemInAbCategory

  2.10-13 AddMorphismBetweenCoproducts

  2.10-14 AddMorphismBetweenCoproductsWithGivenCoproducts

  2.10-15 AddMorphismBetweenDirectProducts

  2.10-16 AddMorphismBetweenDirectProductsWithGivenDirectProducts

  2.10-17 AddMorphismOntoSumOfImagesOfAllMorphisms

  2.10-18 AddProjectionInFactorOfLimit

  2.10-19 AddProjectionInFactorOfLimitWithGivenLimit

  2.10-20 AddProjectionOfBiasedRelativeWeakFiberProduct

  2.10-21 AddProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct

  2.10-22 AddRelativeLift

  2.10-23 AddSetOfMorphismsOfFiniteCategory

  2.10-24 AddSetOfObjectsOfCategory

  2.10-25 AddSumOfImagesOfAllMorphisms

  2.10-26 AddUniversalMorphismFromColimit

  2.10-27 AddUniversalMorphismFromColimitWithGivenColimit

  2.10-28 AddUniversalMorphismIntoBiasedRelativeWeakFiberProduct

  2.10-29 AddUniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct

  2.10-30 AddUniversalMorphismIntoLimit

  2.10-31 AddUniversalMorphismIntoLimitWithGivenLimit

2 Futher CAP operations

2.1 MorphismBetweenCoproducts and MorphismBetweenDirectProducts

2.1-1 MorphismBetweenCoproducts
‣ MorphismBetweenCoproducts( diagram_S, F, diagram_T )( operation )

Returns: a morphism in \(\mathrm{Hom}(\sqcup_{i=0}^{m-1}A_i, \sqcup_{j=0}^{n-1} B_j)\)

The arguments are given as follows:

The output is the morphism \(\sqcup_{i=0}^{m-1} A_i \rightarrow \sqcup_{j=0}^{n-1} B_j\) defined by the pair F.

gap> LoadPackage( "ToolsForCategoricalTowers" );
true
gap> LoadPackage( "Toposes", ">= 2024.02-08", false );
true
gap> LoadPackage( "FinSetsForCAP", ">= 2024.02-09", false );
true
gap> sFinSets := SkeletalCategoryOfFiniteSets( );
SkeletalFinSets
gap> Display( sFinSets );
A CAP category with name SkeletalFinSets:

58 primitive operations were used to derive 348 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsElementaryTopos
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> a := FinSet( sFinSets, 2 );
|2|
gap> b := FinSet( sFinSets, 3 );
|3|
gap> beta := CocartesianBraiding( a, b );
|5| → |5|
gap> Display( beta );
{ 0,..., 4 } ⱶ[ 3, 4, 0, 1, 2 ]→ { 0,..., 4 }
gap> id_a := IdentityMorphism( a );
|2| → |2|
gap> id_b := IdentityMorphism( b );
|3| → |3|
gap> f := Pair( [ 1, 0 ], [ id_a, id_b ] );
[ [ 1, 0 ], [ |2| → |2|, |3| → |3| ] ]
gap> beta2 := MorphismBetweenCoproducts( [ a, b ], f, [ b, a ] );
|5| → |5|
gap> beta2 = beta;
true
gap> W := WrapperCategory( sFinSets,
>              rec( only_primitive_operations := false ) );
WrapperCategory( SkeletalFinSets )
gap> Display( W );
A CAP category with name WrapperCategory( SkeletalFinSets ):

324 primitive operations were used to derive 338 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsElementaryTopos
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> W_a := a / W;
<An object in WrapperCategory( SkeletalFinSets )>
gap> W_b := b / W;
<An object in WrapperCategory( SkeletalFinSets )>
gap> W_beta := CocartesianBraiding( W_a, W_b );
<A morphism in WrapperCategory( SkeletalFinSets )>
gap> MorphismDatum( W_beta ) = beta;
true
gap> W_id_a := IdentityMorphism( W_a );
<An identity morphism in WrapperCategory( SkeletalFinSets )>
gap> W_id_b := IdentityMorphism( W_b );
<An identity morphism in WrapperCategory( SkeletalFinSets )>
gap> W_f := Pair( [ 1, 0 ], [ W_id_a, W_id_b ] );;
gap> W_beta2 := MorphismBetweenCoproducts( [ W_a, W_b ], W_f, [ W_b, W_a ] );
<A morphism in WrapperCategory( SkeletalFinSets )>
gap> W_beta2 = W_beta;
true
gap> O := Opposite( sFinSets );
Opposite( SkeletalFinSets )
gap> Display( O );
A CAP category with name Opposite( SkeletalFinSets ):

257 primitive operations were used to derive 273 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsBicartesianCoclosedCategory
* IsFiniteBicompleteCategory
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> O_a := a / O;
<An object in Opposite( SkeletalFinSets )>
gap> O_b := b / O;
<An object in Opposite( SkeletalFinSets )>
gap> O_beta := CartesianBraiding( O_b, O_a );
<A morphism in Opposite( SkeletalFinSets )>
gap> MorphismDatum( O_beta ) = beta;
true
gap> O_id_a := IdentityMorphism( O_a );
<An identity morphism in Opposite( SkeletalFinSets )>
gap> O_id_b := IdentityMorphism( O_b );
<An identity morphism in Opposite( SkeletalFinSets )>
gap> O_f := Pair( [ 1, 0 ], [ O_id_a, O_id_b ] );;
gap> O_beta2 := MorphismBetweenDirectProducts( [ O_b, O_a ], O_f, [ O_a, O_b ] );
<A morphism in Opposite( SkeletalFinSets )>
gap> O_beta2 = O_beta;
true

2.1-2 MorphismBetweenCoproductsWithGivenCoproducts
‣ MorphismBetweenCoproductsWithGivenCoproducts( S, diagram_S, F, diagram_T, T )( operation )

Returns: a morphism in \(\mathrm{Hom}(\sqcup_{i=0}^{m-1}A_i, \sqcup_{j=0}^{n-1} B_j)\)

The arguments are given as follows:

The output is the morphism \(\sqcup_{i=0}^{m-1} A_i \rightarrow \sqcup_{j=0}^{n-1} B_j\) defined by the pair F.

2.1-3 MorphismBetweenDirectProducts
‣ MorphismBetweenDirectProducts( diagram_S, F, diagram_T )( operation )

Returns: a morphism in \(\mathrm{Hom}(\times_{i=0}^{m-1}A_i, \times_{j=0}^{n-1} B_j)\)

The arguments are given as follows:

The output is the morphism \(\times_{i=0}^{m-1} A_i \rightarrow \times_{j=0}^{n-1} B_j\) defined by the pair F.

gap> LoadPackage( "ToolsForCategoricalTowers" );
true
gap> LoadPackage( "Toposes", ">= 2024.02-08", false );
true
gap> LoadPackage( "FinSetsForCAP", ">= 2024.02-09", false );
true
gap> sFinSets := SkeletalCategoryOfFiniteSets( );
SkeletalFinSets
gap> Display( sFinSets );
A CAP category with name SkeletalFinSets:

58 primitive operations were used to derive 348 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsElementaryTopos
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> a := FinSet( sFinSets, 2 );
|2|
gap> b := FinSet( sFinSets, 3 );
|3|
gap> beta := CartesianBraiding( a, b );
|6| → |6|
gap> Display( beta );
{ 0,..., 5 } ⱶ[ 0, 3, 1, 4, 2, 5 ]→ { 0,..., 5 }
gap> id_a := IdentityMorphism( a );
|2| → |2|
gap> id_b := IdentityMorphism( b );
|3| → |3|
gap> f := Pair( [ 1, 0 ], [ id_b, id_a ] );
[ [ 1, 0 ], [ |3| → |3|, |2| → |2| ] ]
gap> beta2 := MorphismBetweenDirectProducts( [ a, b ], f, [ b, a ] );
|6| → |6|
gap> beta2 = beta;
true
gap> W := WrapperCategory( sFinSets,
>              rec( only_primitive_operations := false ) );
WrapperCategory( SkeletalFinSets )
gap> Display( W );
A CAP category with name WrapperCategory( SkeletalFinSets ):

324 primitive operations were used to derive 338 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsElementaryTopos
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> W_a := a / W;
<An object in WrapperCategory( SkeletalFinSets )>
gap> W_b := b / W;
<An object in WrapperCategory( SkeletalFinSets )>
gap> W_beta := CartesianBraiding( W_a, W_b );
<A morphism in WrapperCategory( SkeletalFinSets )>
gap> MorphismDatum( W_beta ) = beta;
true
gap> W_id_a := IdentityMorphism( W_a );
<An identity morphism in WrapperCategory( SkeletalFinSets )>
gap> W_id_b := IdentityMorphism( W_b );
<An identity morphism in WrapperCategory( SkeletalFinSets )>
gap> W_f := Pair( [ 1, 0 ], [ W_id_b, W_id_a ] );;
gap> W_beta2 := MorphismBetweenDirectProducts( [ W_a, W_b ], W_f, [ W_b, W_a ] );
<A morphism in WrapperCategory( SkeletalFinSets )>
gap> W_beta2 = W_beta;
true
gap> O := Opposite( sFinSets );
Opposite( SkeletalFinSets )
gap> Display( O );
A CAP category with name Opposite( SkeletalFinSets ):

257 primitive operations were used to derive 273 operations for this category
which algorithmically
* IsCategoryWithDecidableColifts
* IsCategoryWithDecidableLifts
* IsEquippedWithHomomorphismStructure
* IsBicartesianCoclosedCategory
* IsFiniteBicompleteCategory
and furthermore mathematically
* IsSkeletalCategory
* IsStrictCartesianCategory
* IsStrictCocartesianCategory
gap> O_a := a / O;
<An object in Opposite( SkeletalFinSets )>
gap> O_b := b / O;
<An object in Opposite( SkeletalFinSets )>
gap> O_beta := CocartesianBraiding( O_b, O_a );
<A morphism in Opposite( SkeletalFinSets )>
gap> MorphismDatum( O_beta ) = beta;
true
gap> O_id_a := IdentityMorphism( O_a );
<An identity morphism in Opposite( SkeletalFinSets )>
gap> O_id_b := IdentityMorphism( O_b );
<An identity morphism in Opposite( SkeletalFinSets )>
gap> O_f := Pair( [ 1, 0 ], [ O_id_b, O_id_a ] );;
gap> O_beta2 := MorphismBetweenCoproducts( [ O_b, O_a ], O_f, [ O_a, O_b ] );
<A morphism in Opposite( SkeletalFinSets )>
gap> O_beta2 = O_beta;
true

2.1-4 MorphismBetweenDirectProductsWithGivenDirectProducts
‣ MorphismBetweenDirectProductsWithGivenDirectProducts( S, diagram_S, F, diagram_T, T )( operation )

Returns: a morphism in \(\mathrm{Hom}(\times_{i=0}^{m-1}A_i, \times_{j=0}^{n-1} B_j)\)

The arguments are given as follows:

The output is the morphism \(\times_{i=0}^{m-1} A_i \rightarrow \times_{j=0}^{n-1} B_j\) defined by the pair F.

2.2 Projective covers and injective envelopes

2.3 IsWeakTerminal and IsWeakInitial

2.3-1 IsWeakTerminal
‣ IsWeakTerminal( a )( property )

Returns: a boolean

The argument is an object \(a\) of a category \(\mathbf{C}\). The output is true if \(a\) is weak terminal \(\mathbf{C}\), otherwise the output is false.

2.3-2 IsWeakInitial
‣ IsWeakInitial( a )( property )

Returns: a boolean

The argument is an object \(a\) of a category \(\mathbf{C}\). The output is true if \(a\) is weak initial in \(\mathbf{C}\), otherwise the output is false.

2.4 RelativeLift/RelativeColift

2.4-1 RelativeLift
‣ RelativeLift( beta, alpha, nu )( operation )

Returns: a morphism in \(\mathrm{Hom}(b,a) + \{ \mathtt{fail} \}\)

The arguments are two morphisms \(\beta: b \rightarrow c\), \(\alpha: a \rightarrow c\), and \(\nu: d \rightarrow c\) such that a relative lift \(\beta / \alpha: b \rightarrow a\) of \(\beta\) along \(\alpha\) modulo \(\nu\) exists. Such a relative lift is returned. Recall that a relative lift \(\beta / \alpha: b \rightarrow a\) of \(\beta\) along \(\alpha\) modulo \(\nu\) is a morphism such that \(\alpha \circ (\beta / \alpha) \sim_{b,c} \beta + \chi \nu\), for some morphism \(\chi: b \rightarrow d\).

2.5 Biased relative weak fiber product

For a given pair of morphisms \((\alpha: A \rightarrow B, \beta \colon C \rightarrow B)\), a biased relative weak fiber product of \((\alpha, \beta)\) consists of three parts:

The triple \(( P, \pi, u )\) is called a biased relative weak fiber product of \((\alpha,\beta)\). We denote the object \(P\) of such a triple by \(\mathrm{BiasedRelativeWeakFiberProduct}(\alpha,\beta)\). We say that the morphism \(u(\tau)\) is induced by the universal property of the biased relative weak fiber product.

2.5-1 BiasedRelativeWeakFiberProduct
‣ BiasedRelativeWeakFiberProduct( alpha, beta, sigma )( operation )

Returns: an object

The arguments are two morphisms \(\alpha: A \rightarrow B\), \(\beta: C \rightarrow B\). The output is the biased relative weak fiber product \(P\) of \(\alpha\) and \(\beta\).

2.5-2 ProjectionOfBiasedRelativeWeakFiberProduct
‣ ProjectionOfBiasedRelativeWeakFiberProduct( alpha, beta, sigma )( operation )

Returns: a morphism in \(\mathrm{Hom}( P, A )\)

The arguments are three morphisms \(\alpha: A \rightarrow B\), \(\beta: C \rightarrow B\), \(\sigma: D \rightarrow A\). The output is the biased relative weak fiber product projection \(\pi: P \rightarrow A\).

2.5-3 ProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct
‣ ProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( alpha, beta, sigma, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( P, A )\)

The arguments are two morphisms \(\alpha: A \rightarrow B\), \(\beta: C \rightarrow B\), \(\sigma: D \rightarrow A\), and an object \(P = \mathrm{BiasedRelativeWeakFiberProduct}( \alpha, \beta )\). The output is the biased relative weak fiber product projection \(\pi: P \rightarrow A\).

2.5-4 UniversalMorphismIntoBiasedRelativeWeakFiberProduct
‣ UniversalMorphismIntoBiasedRelativeWeakFiberProduct( alpha, beta, sigma, tau )( operation )

Returns: a morphism in \(\mathrm{Hom}( T, P )\)

The arguments are three morphisms \(\alpha: A \rightarrow B\), \(\beta: C \rightarrow B\), \(\sigma: D \rightarrow A\), \(\tau: T \rightarrow A\). The output is the morphism \(u( \tau )\) induced by the universal property of the biased relative weak fiber product \(P\) of \(\alpha\) and \(\beta\).

2.5-5 UniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct
‣ UniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( alpha, beta, sigma, tau, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( T, P )\)

The arguments are three morphisms \(\alpha: A \rightarrow B\), \(\beta: C \rightarrow B\), \(\tau: T \rightarrow A\) and an object \(P = \mathrm{BiasedRelativeWeakFiberProduct}( \alpha, \beta )\). The output is the morphism \(u( \tau )\) induced by the universal property of the biased relative weak fiber product \(P\) of \(\alpha\) and \(\beta\).

2.6 EmbeddingOfSumOfImagesOfAllMorphisms

2.6-1 MorphismOntoSumOfImagesOfAllMorphisms
‣ MorphismOntoSumOfImagesOfAllMorphisms( a, b )( operation )

Returns: a morphism

Return a morphism onto the sum of images of all morphisms between a and b.

2.6-2 EmbeddingOfSumOfImagesOfAllMorphisms
‣ EmbeddingOfSumOfImagesOfAllMorphisms( a, b )( operation )

Returns: a morphism

Return the embedding of the sum of images of all morphisms between a and b.

2.6-3 SumOfImagesOfAllMorphisms
‣ SumOfImagesOfAllMorphisms( a, b )( operation )

Returns: a morphism

Return the sum of images of all morphisms between a and b.

2.7 Systems of homogeneous linear equations in linear categories

2.7-1 MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory
‣ MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory( left_coeffs, right_coeffs, right_side )( operation )

Returns: a boolean

Like SolveLinearSystemInAbCategory, but the output is simply true if a unique solution exists, and false otherwise.

2.7-2 MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory
‣ MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory( left_coeffs, right_coeffs )( operation )

Returns: a boolean

Like BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory, but the output is true if the homogeneous system has only the trivial solution, and false otherwise.

2.7-3 BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory
‣ BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory( alpha, beta )( operation )

Returns: a list of lists of morphisms \([X^1, \dots, X^t]\)

The arguments are two lists of lists \(\alpha\) and \(\beta\) of morphisms in a linear category over a commutative ring \(k\). The first list \(\alpha\) (the left coefficients) is a list of list of morphisms \(\alpha_{ij}: A_i \rightarrow B_j\), where \(i = 1, \dots, m\) and \(j = 1, \dots, n\) for integers \(m,n \geq 1\). The second list \(\beta\) (the right coefficients) is a list of list of morphisms \(\beta_{ij}: C_j \rightarrow D_i\), where \(i = 1, \dots, m\) and \(j = 1, \dots, n\). The output is a generating set \([X^1,\dots,X^t]\) for the solutions of the homogeneous linear system: \(\sum_{j = 1}^n \alpha_{ij}\cdot X_{j} \cdot \beta_{ij} = 0, ~i = 1, \dots, m\). Particularly, each \(X^k\) is a list (of length \(n\)) of morphisms \(X^k_j:B_j \to C_j, j=1,\dots,n\).

2.7-4 BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory
‣ BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory( alpha, beta, gamma, delta )( operation )

Returns: a list of lists of morphisms \([X^1, \dots, X^t]\)

The arguments are four lists of lists \(\alpha\), \(\beta\), \(\gamma\), \(\delta\) of morphisms in some linear category over commutative ring. Each of \(\alpha\) and \(\gamma\) is a list of list of morphisms \(\alpha_{ij}, \gamma_{ij}: A_i \rightarrow B_j\), where \(i = 1, \dots, m\) and \(j = 1, \dots, n\) for integers \(m,n \geq 1\). Each of \(\beta\) and \(\delta\) is also a list of list of morphisms \(\beta_{ij}, \delta_{ij}: C_j \rightarrow D_i\), where \(i = 1, \dots, m\) and \(j = 1, \dots, n\). The output is a generating set \([X^1,\dots,X^t]\) for the solutions of the homogeneous linear system defined by \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\), i.e., \(\sum_{j = 1}^n \alpha_{ij}\cdot X^{k}_{j} \cdot \beta_{ij} = \sum_{j = 1}^n \gamma_{ij}\cdot X^{k}_{j} \cdot \delta_{ij}\) for all \(i = 1, \dots, m\) and all \(k = 1, \dots, t\).

2.7-5 BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory
‣ BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory( alpha, delta )( operation )

Returns: a list of lists of morphisms \([X^1, \dots, X^t]\)

The arguments are two lists of lists \(\alpha\), \(\delta\) morphisms in some linear category over commutative ring. \(\alpha\) is a list of list of morphisms \(\alpha_{ij}:A_i \rightarrow B_j\) and \(\delta\) is a list of list of morphisms \(\delta_{ij}:C_j \rightarrow D_i\), where \(i = 1, \dots, m\) and \(j = 1, \dots, n\) for integers \(m,n \geq 1\). The method delegates to BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory applied on \(\alpha\), \(\beta\), \(\gamma\), \(\delta\) where

for all \(i = 1, \dots, m\) and \(j = 1, \dots, n\).

gap> LoadPackage( "ToolsForCategoricalTowers" );
true
gap> LoadPackage( "FreydCategoriesForCAP" );
true
gap> QQ := HomalgFieldOfRationals();
Q
gap> QQ_rows := CategoryOfRows( QQ );
Rows( Q )
gap> t := TensorUnit( QQ_rows );
<A row module over Q of rank 1>
gap> id_t := IdentityMorphism( t );
<An identity morphism in Rows( Q )>
gap> 1*(11)*7 + 2*(12)*8 + 3*(13)*9;
620
gap> 4*(11)*3 + 5*(12)*4 + 6*(13)*1;
450
gap> alpha_s :=  [ [ 1 , 2 , 3  ], [ 4 , 5 , 6  ] ] * id_t;;
gap> beta_s := [ [ 7 , 8 , 9  ], [ 3 , 4 , 1  ] ] * id_t;;
gap> gamma_s := [ 620 , 450  ] * id_t;;
gap> MereExistenceOfSolutionOfLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s, gamma_s );
true
gap> MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s, gamma_s );
false
gap> x := SolveLinearSystemInAbCategory( QQ_rows, alpha_s, beta_s, gamma_s );;
gap> 1*x[1]*7 + 2*x[2]*8 + 3*x[3]*9 = gamma_s[1];
true
gap> 4*x[1]*3 + 5*x[2]*4 + 6*x[3]*1 = gamma_s[2];
true
gap> MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s );
false
gap> basis := BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory
>                                   ( QQ_rows, alpha_s, beta_s );;
gap> Length( basis );
1
gap> Display( basis[1][1] );
Source:
A row module over Q of rank 1

Matrix:
[ [  111/13 ] ]

Range:
A row module over Q of rank 1

A morphism in Rows( Q )
gap> Display( basis[1][2] );
Source:
A row module over Q of rank 1

Matrix:
[ [  -141/26 ] ]

Range:
A row module over Q of rank 1

A morphism in Rows( Q )
gap> Display( basis[1][3] );
Source:
A row module over Q of rank 1

Matrix:
[ [  1 ] ]

Range:
A row module over Q of rank 1

A morphism in Rows( Q )
gap> 2*(11)*5 + 3*(12)*7 + 9*(13)*2;
596
gap> Add( alpha_s,  [ 2 , 3 , 9  ] * id_t );
gap> Add( beta_s, [ 5 , 7 , 2  ] * id_t );
gap> Add( gamma_s, 596 * id_t );
gap> MereExistenceOfSolutionOfLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s, gamma_s );
true
gap> MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s, gamma_s );
true
gap> x := SolveLinearSystemInAbCategory( QQ_rows, alpha_s, beta_s, gamma_s );;
gap> 1*x[1]*7 + 2*x[2]*8 + 3*x[3]*9 = gamma_s[1];
true
gap> 4*x[1]*3 + 5*x[2]*4 + 6*x[3]*1 = gamma_s[2];
true
gap> 2*x[1]*5 + 3*x[2]*7 + 9*x[3]*2 = gamma_s[3];
true
gap> MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory
>                                   ( QQ_rows, alpha_s, beta_s );
true
gap> basis := BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory
>                                   ( QQ_rows, alpha_s, beta_s );
[ ]

2.8 Limit

2.8-1 LimitPair
‣ LimitPair( cat, objs, decorated_mors )( operation )

Returns: a pair of morphisms

The input is

The output is a pair consisting of an object in cat and two parallel morphisms having this object as source, such that the binary equalizer of the two morphisms is the limit of the diagram.

2.8-2 Limit
‣ Limit( objs, decorated_mors )( operation )

Returns: an object

The input is a finite diagram (or subquiver) D (in a category cat) consisting of

The output is the limit object \(\mathrm{Limit}\)(D) of the diagram D.

2.8-3 ProjectionInFactorOfLimit
‣ ProjectionInFactorOfLimit( objects, decorated_morphisms, k )( operation )

Returns: a morphism in \(\mathrm{Hom}( P, P_k )\)

The input is

The output is the projection of the limit object \(P := \mathrm{Limit}\)(D) of the diagram D into the k-th objects \(P_k =\)objs[k].

2.8-4 ProjectionInFactorOfLimitWithGivenLimit
‣ ProjectionInFactorOfLimitWithGivenLimit( objects, decorated_morphisms, k, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( P, P_k )\)

The input is

The output is the projection of the limit object P \(:=\mathrm{Limit}(D)\) into \(P_k =\)objs[k].

2.8-5 UniversalMorphismIntoLimit
‣ UniversalMorphismIntoLimit( objects, decorated_morphisms, T, tau )( operation )

Returns: a morphism in \(\mathrm{Hom}( T, \mathrm{Limit}(D) )\)

The input is

The output is the morphism \(u( \tau ): T \rightarrow \mathrm{Limit}(D)\) given by the universal property of the limit.

2.8-6 UniversalMorphismIntoLimitWithGivenLimit
‣ UniversalMorphismIntoLimitWithGivenLimit( objects, decorated_morphisms, T, tau, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( T, P )\)

The input is

The output is the morphism \(u( \tau ): T \rightarrow P = \mathrm{Limit}(D)\) given by the universal property of the limit.

2.9 Colimit

2.9-1 ColimitPair
‣ ColimitPair( cat, objs, decorated_mors )( operation )

Returns: a pair of morphisms

The input is

The output is a pair consisting of an object in cat and two parallel morphisms having this object as range, such that the binary coequalizer of the two morphisms is the colimit of the diagram.

2.9-2 Colimit
‣ Colimit( objs, decorated_mors )( operation )

Returns: an object

The input is a finite diagram (or subquiver) D (in a category cat) consisting of

The output is the colimit object \(\mathrm{Colimit}\)(D) of the diagram D.

2.9-3 InjectionOfCofactorOfColimit
‣ InjectionOfCofactorOfColimit( objects, decorated_morphisms, k )( operation )

Returns: a morphism in \(\mathrm{Hom}( P_k, P )\)

The input is

The output is the injection of the k-th objects \(P_k =\)objs[k] into the colimit object \(P := \mathrm{Colimit}\)(D) of the diagram D.

2.9-4 InjectionOfCofactorOfColimitWithGivenColimit
‣ InjectionOfCofactorOfColimitWithGivenColimit( objects, decorated_morphisms, k, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( P_k, P )\)

The input is

The output is the projection of \(P_k =\)objs[k] into the colimit object P \(:=\mathrm{Colimit}(D)\).

2.9-5 UniversalMorphismFromColimit
‣ UniversalMorphismFromColimit( objects, decorated_morphisms, T, tau )( operation )

Returns: a morphism in \(\mathrm{Hom}( \mathrm{Colimit}(D), T )\)

The input is

The output is the morphism \(u( \tau ): \mathrm{Colimit}(D) \rightarrow T\) given by the universal property of the colimit.

2.9-6 UniversalMorphismFromColimitWithGivenColimit
‣ UniversalMorphismFromColimitWithGivenColimit( objects, decorated_morphisms, T, tau, P )( operation )

Returns: a morphism in \(\mathrm{Hom}( P, T )\)

The input is

The output is the morphism \(u( \tau ): P = \mathrm{Colimit}(D) \rightarrow T\) given by the universal property of the colimit.

2.9-7 PositionsOfSublist
‣ PositionsOfSublist( superlist, sublist[, from] )( function )

Returns: a list of integers

returns all indices \(1 \leq i \leq\) Length(superlist) at which a sublist (of superlist) equal to sublist starts. If sublist does not occur the output is the empty-list. The version with given from starts searching after the position from.

2.9-8 AllCoproducts
‣ AllCoproducts( cat, objects )( operation )

Returns: a list of objects

The input is a category cat and a list of objects therein, such that the list \(L\) of all possible finite coproducts is finite. The output is the list \(L\).

2.10 Add-methods

2.10-1 AddBasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory
‣ AddBasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory( C, F )( operation )
‣ AddBasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3, arg4, arg5 ) \mapsto \mathtt{BasisOfSolutionsOfHomogeneousDoubleLinearSystemInLinearCategory}(arg2, arg3, arg4, arg5)\).

2.10-2 AddBasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory
‣ AddBasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory( C, F )( operation )
‣ AddBasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3 ) \mapsto \mathtt{BasisOfSolutionsOfHomogeneousLinearSystemInLinearCategory}(arg2, arg3)\).

2.10-3 AddBiasedRelativeWeakFiberProduct
‣ AddBiasedRelativeWeakFiberProduct( C, F )( operation )
‣ AddBiasedRelativeWeakFiberProduct( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation BiasedRelativeWeakFiberProduct. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3, arg4 ) \mapsto \mathtt{BiasedRelativeWeakFiberProduct}(arg2, arg3, arg4)\).

2.10-4 AddColimit
‣ AddColimit( C, F )( operation )
‣ AddColimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation Colimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms ) \mapsto \mathtt{Colimit}(objects, decorated_morphisms)\).

2.10-5 AddEmbeddingOfSumOfImagesOfAllMorphisms
‣ AddEmbeddingOfSumOfImagesOfAllMorphisms( C, F )( operation )
‣ AddEmbeddingOfSumOfImagesOfAllMorphisms( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation EmbeddingOfSumOfImagesOfAllMorphisms. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{EmbeddingOfSumOfImagesOfAllMorphisms}(a, b)\).

2.10-6 AddInjectionOfCofactorOfColimit
‣ AddInjectionOfCofactorOfColimit( C, F )( operation )
‣ AddInjectionOfCofactorOfColimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InjectionOfCofactorOfColimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, k ) \mapsto \mathtt{InjectionOfCofactorOfColimit}(objects, decorated_morphisms, k)\).

2.10-7 AddInjectionOfCofactorOfColimitWithGivenColimit
‣ AddInjectionOfCofactorOfColimitWithGivenColimit( C, F )( operation )
‣ AddInjectionOfCofactorOfColimitWithGivenColimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation InjectionOfCofactorOfColimitWithGivenColimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, k, P ) \mapsto \mathtt{InjectionOfCofactorOfColimitWithGivenColimit}(objects, decorated_morphisms, k, P)\).

2.10-8 AddIsWeakInitial
‣ AddIsWeakInitial( C, F )( operation )
‣ AddIsWeakInitial( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsWeakInitial. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2 ) \mapsto \mathtt{IsWeakInitial}(arg2)\).

2.10-9 AddIsWeakTerminal
‣ AddIsWeakTerminal( C, F )( operation )
‣ AddIsWeakTerminal( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation IsWeakTerminal. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2 ) \mapsto \mathtt{IsWeakTerminal}(arg2)\).

2.10-10 AddLimit
‣ AddLimit( C, F )( operation )
‣ AddLimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation Limit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms ) \mapsto \mathtt{Limit}(objects, decorated_morphisms)\).

2.10-11 AddMereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory
‣ AddMereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory( C, F )( operation )
‣ AddMereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3 ) \mapsto \mathtt{MereExistenceOfUniqueSolutionOfHomogeneousLinearSystemInAbCategory}(arg2, arg3)\).

2.10-12 AddMereExistenceOfUniqueSolutionOfLinearSystemInAbCategory
‣ AddMereExistenceOfUniqueSolutionOfLinearSystemInAbCategory( C, F )( operation )
‣ AddMereExistenceOfUniqueSolutionOfLinearSystemInAbCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3, arg4 ) \mapsto \mathtt{MereExistenceOfUniqueSolutionOfLinearSystemInAbCategory}(arg2, arg3, arg4)\).

2.10-13 AddMorphismBetweenCoproducts
‣ AddMorphismBetweenCoproducts( C, F )( operation )
‣ AddMorphismBetweenCoproducts( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismBetweenCoproducts. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source_diagram, pair, range_diagram ) \mapsto \mathtt{MorphismBetweenCoproducts}(source_diagram, pair, range_diagram)\).

2.10-14 AddMorphismBetweenCoproductsWithGivenCoproducts
‣ AddMorphismBetweenCoproductsWithGivenCoproducts( C, F )( operation )
‣ AddMorphismBetweenCoproductsWithGivenCoproducts( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismBetweenCoproductsWithGivenCoproducts. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( S, source_diagram, pair, range_diagram, T ) \mapsto \mathtt{MorphismBetweenCoproductsWithGivenCoproducts}(S, source_diagram, pair, range_diagram, T)\).

2.10-15 AddMorphismBetweenDirectProducts
‣ AddMorphismBetweenDirectProducts( C, F )( operation )
‣ AddMorphismBetweenDirectProducts( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismBetweenDirectProducts. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( source_diagram, pair, range_diagram ) \mapsto \mathtt{MorphismBetweenDirectProducts}(source_diagram, pair, range_diagram)\).

2.10-16 AddMorphismBetweenDirectProductsWithGivenDirectProducts
‣ AddMorphismBetweenDirectProductsWithGivenDirectProducts( C, F )( operation )
‣ AddMorphismBetweenDirectProductsWithGivenDirectProducts( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismBetweenDirectProductsWithGivenDirectProducts. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( S, source_diagram, pair, range_diagram, T ) \mapsto \mathtt{MorphismBetweenDirectProductsWithGivenDirectProducts}(S, source_diagram, pair, range_diagram, T)\).

2.10-17 AddMorphismOntoSumOfImagesOfAllMorphisms
‣ AddMorphismOntoSumOfImagesOfAllMorphisms( C, F )( operation )
‣ AddMorphismOntoSumOfImagesOfAllMorphisms( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismOntoSumOfImagesOfAllMorphisms. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b ) \mapsto \mathtt{MorphismOntoSumOfImagesOfAllMorphisms}(a, b)\).

2.10-18 AddProjectionInFactorOfLimit
‣ AddProjectionInFactorOfLimit( C, F )( operation )
‣ AddProjectionInFactorOfLimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ProjectionInFactorOfLimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, k ) \mapsto \mathtt{ProjectionInFactorOfLimit}(objects, decorated_morphisms, k)\).

2.10-19 AddProjectionInFactorOfLimitWithGivenLimit
‣ AddProjectionInFactorOfLimitWithGivenLimit( C, F )( operation )
‣ AddProjectionInFactorOfLimitWithGivenLimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ProjectionInFactorOfLimitWithGivenLimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, k, P ) \mapsto \mathtt{ProjectionInFactorOfLimitWithGivenLimit}(objects, decorated_morphisms, k, P)\).

2.10-20 AddProjectionOfBiasedRelativeWeakFiberProduct
‣ AddProjectionOfBiasedRelativeWeakFiberProduct( C, F )( operation )
‣ AddProjectionOfBiasedRelativeWeakFiberProduct( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ProjectionOfBiasedRelativeWeakFiberProduct. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c ) \mapsto \mathtt{ProjectionOfBiasedRelativeWeakFiberProduct}(a, b, c)\).

2.10-21 AddProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct
‣ AddProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( C, F )( operation )
‣ AddProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c, P ) \mapsto \mathtt{ProjectionOfBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct}(a, b, c, P)\).

2.10-22 AddRelativeLift
‣ AddRelativeLift( C, F )( operation )
‣ AddRelativeLift( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation RelativeLift. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( beta, alpha, nu ) \mapsto \mathtt{RelativeLift}(beta, alpha, nu)\).

2.10-23 AddSetOfMorphismsOfFiniteCategory
‣ AddSetOfMorphismsOfFiniteCategory( C, F )( operation )
‣ AddSetOfMorphismsOfFiniteCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation SetOfMorphismsOfFiniteCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( ) \mapsto \mathtt{SetOfMorphismsOfFiniteCategory}()\).

2.10-24 AddSetOfObjectsOfCategory
‣ AddSetOfObjectsOfCategory( C, F )( operation )
‣ AddSetOfObjectsOfCategory( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation SetOfObjectsOfCategory. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( ) \mapsto \mathtt{SetOfObjectsOfCategory}()\).

2.10-25 AddSumOfImagesOfAllMorphisms
‣ AddSumOfImagesOfAllMorphisms( C, F )( operation )
‣ AddSumOfImagesOfAllMorphisms( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation SumOfImagesOfAllMorphisms. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( arg2, arg3 ) \mapsto \mathtt{SumOfImagesOfAllMorphisms}(arg2, arg3)\).

2.10-26 AddUniversalMorphismFromColimit
‣ AddUniversalMorphismFromColimit( C, F )( operation )
‣ AddUniversalMorphismFromColimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismFromColimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismFromColimit}(objects, decorated_morphisms, T, tau)\).

2.10-27 AddUniversalMorphismFromColimitWithGivenColimit
‣ AddUniversalMorphismFromColimitWithGivenColimit( C, F )( operation )
‣ AddUniversalMorphismFromColimitWithGivenColimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismFromColimitWithGivenColimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismFromColimitWithGivenColimit}(objects, decorated_morphisms, T, tau, P)\).

2.10-28 AddUniversalMorphismIntoBiasedRelativeWeakFiberProduct
‣ AddUniversalMorphismIntoBiasedRelativeWeakFiberProduct( C, F )( operation )
‣ AddUniversalMorphismIntoBiasedRelativeWeakFiberProduct( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismIntoBiasedRelativeWeakFiberProduct. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c, t ) \mapsto \mathtt{UniversalMorphismIntoBiasedRelativeWeakFiberProduct}(a, b, c, t)\).

2.10-29 AddUniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct
‣ AddUniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( C, F )( operation )
‣ AddUniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( a, b, c, t, P ) \mapsto \mathtt{UniversalMorphismIntoBiasedRelativeWeakFiberProductWithGivenBiasedRelativeWeakFiberProduct}(a, b, c, t, P)\).

2.10-30 AddUniversalMorphismIntoLimit
‣ AddUniversalMorphismIntoLimit( C, F )( operation )
‣ AddUniversalMorphismIntoLimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismIntoLimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismIntoLimit}(objects, decorated_morphisms, T, tau)\).

2.10-31 AddUniversalMorphismIntoLimitWithGivenLimit
‣ AddUniversalMorphismIntoLimitWithGivenLimit( C, F )( operation )
‣ AddUniversalMorphismIntoLimitWithGivenLimit( C, F, weight )( operation )

Returns: nothing

The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation UniversalMorphismIntoLimitWithGivenLimit. Optionally, a weight (default: 100) can be specified which should roughly correspond to the computational complexity of the function (lower weight = less complex = faster execution). \(F: ( objects, decorated_morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismIntoLimitWithGivenLimit}(objects, decorated_morphisms, T, tau, P)\).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 Ind

generated by GAPDoc2HTML