‣ SET_RANGE_CATEGORY_Of_HOMOMORPHISM_STRUCTURE ( C, H ) | ( operation ) |
The input are two categories C and H. There is not output but the following side effects are applied to C:
SetRangeCategoryOfHomomorphismStructure
( C, H )
SetIsEquippedWithHomomorphismStructure
( C, true
)
Furthermore, if IsCategoryWithDecidableLifts
( H ) then
SetIsCategoryWithDecidableLifts
( C, true
)
SetIsCategoryWithDecidableColifts
( C, true
)
An error is raised if RangeCategoryOfHomomorphismStructure
( C ) is already set.
‣ ListKnownDoctrines ( arg ) | ( function ) |
Returns: a list
The function takes no arguments and returns the list of known doctrines.
‣ ListMethodsOfDoctrine ( doctrine_name ) | ( function ) |
Returns: a list
The argument doctrine_name is a string which is a name of a valid doctrine in the ListKnownDoctrines
().
‣ DummyCategoryInDoctrines ( doctrine_names ) | ( operation ) |
Returns: a CAP category
The argument is a nonempty list doctrine_names of strings of doctrine names and the output is a dummy category created using DummyCategory
which lies in the given doctrine. If the option minimal
is set to true, then only a logically minimal subset of the doctrines is considered.
gap> LoadPackage( "ToolsForCategoricalTowers", false ); true gap> D1 := DummyCategoryInDoctrines( "IsAbCategory" ); DummyCategoryInDoctrines( [ "IsAbCategory" ] ) gap> Display( D1 ); A CAP category with name DummyCategoryInDoctrines( [ "IsAbCategory" ] ): 16 primitive operations were used to derive 28 operations for this category which algorithmically * IsAbCategory gap> D2 := DummyCategoryInDoctrines( [ "IsAbCategory", "IsAbelianCategory" ] ); DummyCategoryInDoctrines( [ "IsAbelianCategory" ] ) gap> Display( D2 ); A CAP category with name DummyCategoryInDoctrines( [ "IsAbelianCategory" ] ): 32 primitive operations were used to derive 291 operations for this category which algorithmically * IsAbelianCategory gap> D3 := DummyCategoryInDoctrines( > [ "IsCategoryWithInitialObject", > "IsCategoryWithTerminalObject", > "IsCategoryWithZeroObject" ] ); DummyCategoryInDoctrines( [ "IsCategoryWithInitialObject", "IsCategoryWithTerminalObject", "IsCategoryWithZeroObject" ] ) gap> Display( D3 ); A CAP category with name DummyCategoryInDoctrines( [ "IsCategoryWithInitialObject", "IsCategoryWithTerminalObject", "IsCategoryWithZeroObject" ] ): 18 primitive operations were used to derive 41 operations for this category which algorithmically * IsCategoryWithZeroObject gap> D4 := DummyCategoryInDoctrines( > [ "IsCategoryWithInitialObject", > "IsCategoryWithTerminalObject", > "IsCategoryWithZeroObject" ] : minimal := true ); DummyCategoryInDoctrines( [ "IsCategoryWithZeroObject" ] ) gap> Display( D4 ); A CAP category with name DummyCategoryInDoctrines( [ "IsCategoryWithZeroObject" ] ): 14 primitive operations were used to derive 41 operations for this category which algorithmically * IsCategoryWithZeroObject
‣ IsObjectFiniteCategory ( C ) | ( property ) |
Returns: true
or false
The (evil) property of C being a category with finitely many objects.
‣ IsFiniteCategory ( C ) | ( property ) |
Returns: true
or false
The (evil) property of C being a finite category.
‣ IsEquivalentToFiniteCategory ( C ) | ( property ) |
Returns: true
or false
The property of C being equivalent to a finite category.
‣ SetOfObjectsOfCategory ( C ) | ( attribute ) |
Returns: a list of CAP category objects
Return a duplicate free list of objects of the category C.
‣ SetOfObjects ( C ) | ( attribute ) |
Returns: a list of CAP category objects
Return a duplicate free list of objects of the category C. The corresponding CAP operation is SetOfObjectsOfCategory
.
‣ SetOfMorphismsOfFiniteCategory ( C ) | ( attribute ) |
Returns: a list of a CAP category morphisms
Return a duplicate free list of morphisms of the finite category C.
‣ SetOfMorphisms ( C ) | ( attribute ) |
Returns: a list of CAP category objects
Return a duplicate free list of morphisms of the finite category C. The corresponding CAP operation is SetOfMorphismsOfFiniteCategory
.
‣ CovariantHomFunctor ( o ) | ( attribute ) |
Returns: a CAP functor
The input is an object o in a category C. The output is the covariant Hom functor \mathrm{Hom}(o,-) from the category C to RangeCategoryOfHomomorphismStructure
( C ).
‣ GlobalSectionFunctor ( C ) | ( attribute ) |
Returns: a CAP functor
Returns the global section functor \mathrm{Hom}(1,-) from the category C with terminal object 1 to RangeCategoryOfHomomorphismStructure
( C ).
‣ DatumOfCellAsEvaluatableString ( c, list_of_evaluatable_strings ) | ( operation ) |
Returns: a string
The arguments is a category cell c and a list list_of_evaluatable_strings of string all which must be evalutable with EvalString
. The output is a string str
such that
EvalString
( str
) = ObjectDatum( c ) if c is a category object, or
EvalString
( str
) = MorphismDatum( c ) if c is a category morphism.
The output string must, apart from the brackets, only consist of the substrings "ObjectConstructor
", "MorphismConstructor
" and the string in list_of_evaluatable_strings.
‣ CellAsEvaluatableString ( c, list_of_evaluatable_strings ) | ( operation ) |
Returns: a string
The arguments is a category cell c and a list list_of_evaluatable_strings of string all which must be evalutable with EvalString
. The output is a string str
such that
IsEqualForObjects( EvalString
( str
), c ) if c is a category object, or
IsEqualForMorphismsOnMor( EvalString
( str
), c ) if c is a category morphism.
The output string must, apart from the brackets, only consist of the substrings "ObjectConstructor
", "MorphismConstructor
" and the string in list_of_evaluatable_strings.
generated by GAPDoc2HTML