Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

11 Category of finitely presented associative unital matrix algebras
 11.1 Attributes
 11.2 Constructors
 11.3 Operations
 11.4 GAP categories

11 Category of finitely presented associative unital matrix algebras

11.1 Attributes

11.1-1 UnderlyingCategoryOfFpAlgebras
‣ UnderlyingCategoryOfFpAlgebras( MatAlg_k )( attribute )

The input is a category of finitely presented associative unital matrix algebras. The output is the underlying category of finitely presented algebras.

11.1-2 UnderlyingCategoryOfMatrices
‣ UnderlyingCategoryOfMatrices( MatAlg_k )( attribute )

The input is a category of finitely presented associative unital matrix k-algebras. The output is the underlying category of k-matrices.

11.1-3 CoefficientsRing
‣ CoefficientsRing( MatAlg_k )( attribute )

The input is a category of finitely presented associative unital matrix k-algebras. The output is the underlying commutative ring k of coefficients.

11.1-4 CoefficientsRing
‣ CoefficientsRing( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebras. The output is the underlying commutative ring k of coefficients.

11.1-5 DefiningPairOfFinitelyPresentedMatrixAlgebra
‣ DefiningPairOfFinitelyPresentedMatrixAlgebra( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebras. The output is a pair. Its first entry is the underlying finitely presented k-algebra Its second entry is a pair with first entry an object in the the underlying category V of k-matrices and a list of morphisms in V.

11.1-6 UnderlyingMorphismInCategoryOfFpAlgebras
‣ UnderlyingMorphismInCategoryOfFpAlgebras( fp_matrix_algebra_morphism )( attribute )

The input is a finitely presented associative unital matrix algebra. The output is the underlying morphism between the underlying finitely presented algebras.

11.1-7 NrGenerators
‣ NrGenerators( fp_matrix_algebra )( operation )

The input is a finitely presented associative unital matrix algebra. The output is the number of generators.

11.1-8 Generators
‣ Generators( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix algebra. The output is the list of generators of the underlying finitely presented algebra.

11.1-9 MatrixGenerators
‣ MatrixGenerators( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebra. The output is the list of matrix generators as morphisms in the underlying category of k-matrices.

11.1-10 AssociatedLinearClosureOfPathCategory
‣ AssociatedLinearClosureOfPathCategory( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebra. The output is the corresponding ambient free k-algebra as a k-linear closure of a path category of loops on a single vertex.

11.1-11 DefiningRelations
‣ DefiningRelations( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix algebra. The output its list of defining relations.

11.1-12 GroebnerBasisOfDefiningRelations
‣ GroebnerBasisOfDefiningRelations( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix algebra. The output is the Gröbner basis of its list of defining relations.

11.1-13 AssociatedQuotientCategoryOfLinearClosureOfPathCategory
‣ AssociatedQuotientCategoryOfLinearClosureOfPathCategory( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebra. The output is the corresponding underlying finitely presented k-algebra as a quotient of a k-linear closure of a path category of loops on a single vertex.

11.1-14 Dimension
‣ Dimension( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebra. The output its k-dimension.

11.1-15 AmbientAlgebra
‣ AmbientAlgebra( fp_matrix_algebra )( attribute )

The input is a finitely presented associative unital matrix k-algebra. The output is the corresponding ambient free k-algebra.

11.2 Constructors

11.2-1 CategoryOfFpMatrixAlgebras
‣ CategoryOfFpMatrixAlgebras( Alg_k, V )( operation )

The input is a category Alg_k of finitely presented k-algebras and a category V of k-matrices. The output is the category of finitely presented associative unital matrix algebras over k.

gap> LoadPackage( "Algebroids", false );
true
gap> F2 := HomalgRingOfIntegersInSingular( 2 );
GF(2)
gap> MatAlg_F2 := CategoryOfFpMatrixAlgebras( F2 );
CategoryOfFpMatrixAlgebras( GF(2) )
gap> Display( MatAlg_F2 );
A CAP category with name CategoryOfFpMatrixAlgebras( GF(2) ):

24 primitive operations were used to derive 45 operations for this category \
which algorithmically
* IsCategoryWithInitialObject
* IsSymmetricMonoidalCategory
and not yet algorithmically
* IsCategoryWithCoequalizers
* IsCartesianCategory
gap> Alg_F2 := UnderlyingCategoryOfFpAlgebras( MatAlg_F2 );
CategoryOfFpAlgebras( GF(2) )
gap> Display( Alg_F2 );
A CAP category with name CategoryOfFpAlgebras( GF(2) ):

31 primitive operations were used to derive 130 operations for this category \
which algorithmically
* IsFiniteCocompleteCategory
* IsBicartesianCategory
* IsSymmetricMonoidalCategory
gap> Mat_F2 := UnderlyingCategoryOfMatrices( MatAlg_F2 );
Rows( GF(2) )
gap> q := FinQuiver( "q(o)[x:o->o,y:o->o]" );
FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" )
gap> P := PathCategory( q );
PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) )
gap> L := F2[P];
GF(2)-LinearClosure( PathCategory( \
FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) )
gap> relations := [ L.x^2 - L.x,  L.y^3 - L.y,  L.xy - L.y * (L.x+L.id_o) ];
[ 1*x^2 + 1*x:(o) -≻ (o), 1*y^3 + 1*y:(o) -≻ (o),\
  1*y⋅x + 1*x⋅y + 1*y:(o) -≻ (o) ]
gap> Q := L / relations;
GF(2)-LinearClosure( PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) ) / \
[ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ]
gap> Dimension( Q );
6
gap> A := Q / Alg_F2;
<An object in CategoryOfFpAlgebras( GF(2) )>
gap> IsWellDefined( A );
true
gap> Dimension( A );
6
gap> Display( A );
GF(2)<x,y> / [ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ]
gap> mx := HomalgDiagonalMatrix( [ 1, 0, 1, 0 ], F2 ) / Mat_F2;
<A morphism in Rows( GF(2) )>
gap> my := DiagMat( [
>               HomalgZeroMatrix( 2, 2, F2 ),
>               CertainRows( HomalgIdentityMatrix( 2, F2 ), [ 2, 1 ] ) ] ) / Mat_F2;
<A morphism in Rows( GF(2) )>
gap> matrix_generators := Pair( 4 / Mat_F2, [ mx, my ] );
[ <A row module over GF(2) of rank 4>,\
  [ <A morphism in Rows( GF(2) )>, <A morphism in Rows( GF(2) )> ] ]
gap> M := ObjectConstructor( MatAlg_F2, Pair( A, matrix_generators ) );
<An object in CategoryOfFpMatrixAlgebras( GF(2) )>
gap> IsWellDefined( M );
true
gap> M = Pair( ( L / Alg_F2 ) / relations, matrix_generators ) / MatAlg_F2;
true
gap> M.x;
1*x:(o) -≻ (o)
gap> M.y;
1*y:(o) -≻ (o)
gap> Dimension( M );
6
gap> NrGenerators( M );
2
gap> Generators( M );
[ 1*x:(o) -≻ (o), 1*y:(o) -≻ (o) ]
gap> MatrixGenerators( M ) = [ mx, my ];
true
gap> AssociatedLinearClosureOfPathCategory( M );
GF(2)-LinearClosure( PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) )
gap> DefiningRelations( M );
[ 1*x^2 + 1*x:(o) -≻ (o), 1*y^3 + 1*y:(o) -≻ (o), \
  1*y⋅x + 1*x⋅y + 1*y:(o) -≻ (o) ]
gap> AssociatedQuotientCategoryOfLinearClosureOfPathCategory( M );
GF(2)-LinearClosure( PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) ) \
/ [ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ]
gap> GroebnerBasisOfDefiningRelations( M );
[ 1*x^2 + 1*x:(o) -≻ (o), 1*y^3 + 1*y:(o) -≻ (o), \
  1*y⋅x + 1*x⋅y + 1*y:(o) -≻ (o) ]
gap> IsOne( PreCompose( LeftUnitor( M ), LeftUnitorInverse( M ) ) );
true
gap> IsOne( PreCompose( LeftUnitorInverse( M ), LeftUnitor( M ) ) );
true
gap> IsOne( PreCompose( RightUnitor( M ), RightUnitorInverse( M ) ) );
true
gap> IsOne( PreCompose( RightUnitorInverse( M ), RightUnitor( M ) ) );
true
gap> TestMonoidalTriangleIdentity( MatAlg_F2, M, M );
true
gap> TestMonoidalPentagonIdentity( MatAlg_F2, M, M, M, M );
true
gap> Braiding( M, M ) = BraidingInverse( M, M );
true
gap> TestBraidingCompatibility( MatAlg_F2, M, M, M );
true
gap> iota1 := UniversalMorphismFromInitialObject( M );
<A morphism in CategoryOfFpMatrixAlgebras( GF(2) )>
gap> IsWellDefined( iota1 );
true

11.2-2 CategoryOfFpMatrixAlgebras
‣ CategoryOfFpMatrixAlgebras( k )( attribute )

The input is a commutative ring k. The output is the category of finitely presented associative unital matrix algebras over k.

11.3 Operations

11.3-1 Counit
‣ Counit( fp_matrix_algebra, list )( operation )

11.3-2 Comultiplication
‣ Comultiplication( fp_matrix_algebra, list )( operation )

11.4 GAP categories

11.4-1 IsCategoryOfFinitelyPresentedMatrixAlgebras
‣ IsCategoryOfFinitelyPresentedMatrixAlgebras( category )( filter )

Returns: true or false

The GAP category of categories of finitely presented associative unital matrix algebras.

11.4-2 IsObjectInCategoryOfFpMatrixAlgebras
‣ IsObjectInCategoryOfFpMatrixAlgebras( object )( filter )

Returns: true or false

The GAP category of finitely presented associative unital matrix algebras.

11.4-3 IsMorphismInCategoryOfFpMatrixAlgebras
‣ IsMorphismInCategoryOfFpMatrixAlgebras( morphism )( filter )

Returns: true or false

The GAP category of morphisms of finitely presented associative unital matrix algebras.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind

generated by GAPDoc2HTML