‣ CoefficientsRing ( Alg_k ) | ( attribute ) |
The input is a category of finitely presented associative unital k-algebras. The output is the underlying commutative ring k of coefficients.
‣ CoefficientsRing ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital k-algebras. The output is the underlying commutative ring k of coefficients.
‣ DefiningSeptupleOfFinitelyPresentedAlgebra ( fp_algebra ) | ( attribute ) |
‣ ListOfImages ( fp_algebra_morphism ) | ( attribute ) |
‣ NrGenerators ( fp_algebra ) | ( operation ) |
The input is a finitely presented associative unital algebra. The output is the number of generators.
‣ Generators ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital algebra. The output is the list of generators of the underlying finitely presented associative unital algebra.
‣ AssociatedLinearClosureOfPathCategory ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital k-algebra. The output is the corresponding ambient free k-algebra as a k-linear closure of a path category of loops on a single vertex.
‣ DefiningRelations ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital algebra. The output its list of defining relations.
‣ GroebnerBasisOfDefiningRelations ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital algebra. The output is the Gröbner basis of its list of defining relations.
‣ AssociatedQuotientCategoryOfLinearClosureOfPathCategory ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital k-algebra. The output is the corresponding underlying finitely presented associative unital k-algebra as a quotient of a k-linear closure of a path category of loops on a single vertex.
‣ Dimension ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital k-algebra. The output its k-dimension.
‣ AmbientAlgebra ( fp_algebra ) | ( attribute ) |
The input is a finitely presented associative unital algebra. The output is the corresponding ambient free algebra.
‣ AssociatedFunctorOfLinearClosuresOfPathCategoriesData ( fp_algebra_morphism ) | ( attribute ) |
‣ CategoryOfFpAlgebras ( k ) | ( attribute ) |
The input is a commutative ring k. The output is the category of finitely presented associative unital algebras over k.
gap> LoadPackage( "Algebroids", false ); true gap> F2 := HomalgRingOfIntegersInSingular( 2 ); GF(2) gap> Alg_F2 := CategoryOfFpAlgebras( F2 ); CategoryOfFpAlgebras( GF(2) ) gap> Display( Alg_F2 ); A CAP category with name CategoryOfFpAlgebras( GF(2) ): 31 primitive operations were used to derive 130 operations for this category \ which algorithmically * IsFiniteCocompleteCategory * IsBicartesianCategory * IsSymmetricMonoidalCategory gap> T := TerminalObject( Alg_F2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Display( T ); GF(2) / [ 1*id(o) ] gap> iota := UniversalMorphismFromInitialObject( T ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> I := Source( iota ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Display( I ); GF(2) / [ ] gap> Display( iota ); GF(2) / [ 1*id(o) ] ^ | [ ] | GF(2) / [ ] gap> K := TensorUnit( Alg_F2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Display( K ); GF(2) / [ ] gap> K = I; true gap> q1 := FinQuiver( "q(o)[x:o->o,y:o->o]" ); FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) gap> P1 := PathCategory( q1 ); PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) gap> L1 := F2[P1]; GF(2)-LinearClosure( PathCategory( \ FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) ) gap> relations1 := [ L1.x^2 - L1.x, L1.y^3 - L1.y, L1.xy - L1.y * (L1.x+L1.id_o) ]; [ 1*x^2 + 1*x:(o) -≻ (o), 1*y^3 + 1*y:(o) -≻ (o),\ 1*y⋅x + 1*x⋅y + 1*y:(o) -≻ (o) ] gap> Q1 := L1 / relations1; GF(2)-LinearClosure( PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o]" ) ) ) / \ [ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ] gap> Dimension( Q1 ); 6 gap> AQ1 := AssociatedAlgebroid( Q1 ); Algebra( GF(2), FreeCategory( RightQuiver( "q(o)[x:o->o,y:o->o]" ) ) ) / \ relations gap> Dimension( AQ1 ); 6 gap> A1 := Q1 / Alg_F2; <An object in CategoryOfFpAlgebras( GF(2) )> gap> A1 = ( L1 / Alg_F2 ) / relations1; true gap> Dimension( A1 ); 6 gap> Display( A1 ); GF(2)<x,y> / [ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ] gap> unit1 := UniversalMorphismFromInitialObject( A1 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> Display( unit1 ); GF(2)<x,y> / [ 1*x^2 + 1*x, 1*y^3 + 1*y, 1*y⋅x + 1*x⋅y + 1*y ] ^ | [ ] | GF(2) / [ ] gap> counit1 := Counit( A1, [ 1, 0 ] ); <A split epimorphism in CategoryOfFpAlgebras( GF(2) )> gap> Display( counit1 ); GF(2) / [ ] ^ | [ 1*id(o), 0 ] | GF(2)<x,y> / [ 1*x^2 + 1*x, 1*y^3 + 1*y, \ 1*y⋅x + 1*x⋅y + 1*y ] gap> o := A1.id_o; 1*id(o):(o) -≻ (o) gap> x := A1.x; 1*x:(o) -≻ (o) gap> y := A1.y; 1*y:(o) -≻ (o) gap> comult1 := Comultiplication( A1, > [ [ [ o, x ], [ x, o ], [ o, o ], [ y^2, y^2 ] ], > [ [ o, y ], [ y, o + y^2 ] ] ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> q2 := FinQuiver( "q(o)[x:o->o,y:o->o,z:o->o,t:o->o]" ); FinQuiver( "q(o)[x:o-≻o,y:o-≻o,z:o-≻o,t:o-≻o]" ) gap> P2 := PathCategory( q2 ); PathCategory( FinQuiver( "q(o)[x:o-≻o,y:o-≻o,z:o-≻o,t:o-≻o]" ) ) gap> L2 := F2[P2]; GF(2)-LinearClosure( PathCategory( \ FinQuiver( "q(o)[x:o-≻o,y:o-≻o,z:o-≻o,t:o-≻o]" ) ) ) gap> Q2 := L2 / [ L2.x+L2.y+L2.t+L2.tt-L2.id_o, L2.xx-L2.x, L2.yy-L2.y, L2.xy, L2.yx, > L2.zz-L2.t-L2.tt, L2.zz-L2.ttt, L2.zt-L2.ttz, L2.zt+L2.ztt-L2.z, > L2.xt+L2.yt, L2.tx+L2.ty ]; GF(2)-LinearClosure( PathCategory( \ FinQuiver( "q(o)[x:o-≻o,y:o-≻o,z:o-≻o,t:o-≻o]" ) ) ) / \ [ 1*t^2 + 1*x + 1*y + 1*t + 1*id(o), 1*x^2 + 1*x, 1*y^2 + 1*y, ... ] gap> A2 := Q2 / Alg_F2; <An object in CategoryOfFpAlgebras( GF(2) )> gap> Dimension( A2 ); 6 gap> Display( A2 ); GF(2)<x,y,z,t> / [ 1*t^2 + 1*x + 1*y + 1*t + 1*id(o), 1*x^2 + 1*x, \ 1*y^2 + 1*y, ... ] gap> A12 := TensorProduct( A1, A2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Dimension( A12 ); 36 gap> beta := Braiding( A1, A2 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> beta_i := BraidingInverse( A1, A2 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> alpha := AssociatorLeftToRight( A1, A2, A1 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> alpha_i := AssociatorRightToLeft( A1, A2, A1 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> A1xA2 := DirectProduct( A1, A2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Dimension( A1xA2 ); 12 gap> diagram := [ A1, A2 ]; [ <An object in CategoryOfFpAlgebras( GF(2) )>, <An object in CategoryOfFpAlgebras( GF(2) )> ] gap> pr1 := ProjectionInFactorOfDirectProduct( diagram, 1 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> pr2 := ProjectionInFactorOfDirectProduct( diagram, 2 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> u := UniversalMorphismIntoDirectProduct( [ pr1, pr2 ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> IsOne( u ); true gap> v := TensorProduct( pr1, pr2 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> A1uA2 := Coproduct( A1, A2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> i1 := InjectionOfCofactorOfCoproduct( diagram, 1 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> i2 := InjectionOfCofactorOfCoproduct( diagram, 2 ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> w := UniversalMorphismFromCoproduct( [ i1, i2 ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> IsOne( w ); true gap> cart_fact := LeftCartesianDistributivityFactoring( A1, [ A1, A2 ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> cocart_expand := LeftCocartesianCodistributivityExpanding( A1, [ A1, A2 ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )>
The category of (finitely presented) algebras is not codistributive. An example was suggested by a referee in the paper the paper titled "Distributivity ot coproducts over products" by B. A. Davey and H. Werner, Algebra Universalis, 12 (1981) 387-394.
gap> LoadPackage( "Algebroids", false ); true gap> F2 := HomalgRingOfIntegers( 2 ); GF(2) gap> Alg_F2 := CategoryOfFpAlgebras( F2 ); CategoryOfFpAlgebras( GF(2) ) gap> F0 := InitialObject( Alg_F2 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Display( F0 ); GF(2) / [ ] gap> A := DirectProduct( F0, F0 ); <An object in CategoryOfFpAlgebras( GF(2) )> gap> Dimension( A ); 2 gap> B := F0; <An object in CategoryOfFpAlgebras( GF(2) )> gap> C := F0; <An object in CategoryOfFpAlgebras( GF(2) )> gap> eta := LeftCocartesianCodistributivityExpanding( A, [ B, C ] ); <A morphism in CategoryOfFpAlgebras( GF(2) )> gap> IsWellDefined( eta ); true gap> Dimension( Source( eta ) ); infinity gap> Dimension( Target( eta ) ); 4
‣ Counit ( fp_algebra, list ) | ( operation ) |
‣ Comultiplication ( fp_algebra, list ) | ( operation ) |
‣ IsCategoryOfFinitelyPresentedAlgebras ( category ) | ( filter ) |
Returns: true
or false
The GAP category of categories of finitely presented associative unital algebras.
‣ IsObjectInCategoryOfFpAlgebras ( object ) | ( filter ) |
Returns: true
or false
The GAP category of finitely presented associative unital algebras.
‣ IsMorphismInCategoryOfFpAlgebras ( morphism ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms of finitely presented associative unital algebras.
generated by GAPDoc2HTML