Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

9 The frame of Zariski open subsets in a projective variety
 9.1 GAP Categories
 9.2 Constructors

9 The frame of Zariski open subsets in a projective variety

9.1 GAP Categories

9.1-1 IsZariskiFrameOfAProjectiveVariety
‣ IsZariskiFrameOfAProjectiveVariety( object )( filter )

Returns: true or false

The GAP category of Zariski frames of a projective variety.

9.1-2 IsObjectInZariskiFrameOfAProjectiveVariety
‣ IsObjectInZariskiFrameOfAProjectiveVariety( object )( filter )

Returns: true or false

The GAP category of objects in a Zariski frame of a projective variety.

9.1-3 IsMorphismInZariskiFrameOfAProjectiveVariety
‣ IsMorphismInZariskiFrameOfAProjectiveVariety( morphism )( filter )

Returns: true or false

The GAP category of morphisms in a Zariski frame of a projective variety.

9.2 Constructors

9.2-1 ZariskiFrameOfProj
‣ ZariskiFrameOfProj( R )( attribute )

Returns: a CAP category

Construct the Zariski frame of open sets in a projective variety defined as the complements of vanishing loci of (radical) ideals of a homalg ring R.

9.2-2 OpenSubsetOfProj
‣ OpenSubsetOfProj( mat )( operation )
‣ OpenSubsetOfProj( str, R )( operation )
‣ OpenSubsetOfProjByListOfColumns( L )( operation )

Returns: a CAP object

Construct a Zariski open subset (as an object in the Zariski frame of open subsets in a projective variety) from the homogeneous matrix mat. The result is the projective non-support of the module-theoretic cokernel M of the matrix mat viewed as a morphism in the Freyd category of the associated category of graded rows, i.e., the result is the complement of the projective vanishing locus of the (homogeneous) annihilator of M.

9.2-3 OpenSubsetOfProjByRadicalColumn
‣ OpenSubsetOfProjByRadicalColumn( I )( operation )
‣ OpenSubsetOfProjByRadicalColumn( str, R )( operation )

OpenSubsetOfProjByRadicalColumn assumes that the image is a radical ideal.

9.2-4 OpenSubsetOfProjByStandardColumn
‣ OpenSubsetOfProjByStandardColumn( I )( operation )
‣ OpenSubsetOfProjByStandardColumn( str, R )( operation )

OpenSubsetOfProjByStandardColumn assumes that the image is a radical ideal given by some sort of a "standard" basis.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Ind

generated by GAPDoc2HTML