gap> R := HomalgFieldOfRationalsInSingular( ) * "x,y"; Q[x,y] gap> ZF := ZariskiFrameOfAffineSpectrum( R ); The frame of Zariski open subsets of the affine spectrum of Q[x,y] gap> A := OpenSubsetOfSpecByRadicalColumn( HomalgMatrix( "[ x ]", 1, 1, R ) ); D_{Q[x,y]}( <...> ) gap> B := OpenSubsetOfSpec( "[ x^2 ]", R ); D_{Q[x,y]}( <...> ) gap> A = B; true gap> C := OpenSubsetOfSpecByRadicalColumn( "[ y ]", R ); D_{Q[x,y]}( <...> ) gap> D := OpenSubsetOfSpec( "[ x^2*y^3 ]", R ); D_{Q[x,y]}( <...> ) gap> A * C = D; true gap> T := TerminalObject( ZF ); D_{Q[x,y]}( <...> ) gap> I := InitialObject( ZF ); D_{Q[x,y]}( <...> )
gap> R := HomalgFieldOfRationalsInSingular( ) * "x,y"; Q[x,y] gap> ZC := ZariskiCoframeOfAffineSpectrum( R ); The coframe of Zariski closed subsets of the affine spectrum of Q[x,y] gap> A := ClosedSubsetOfSpecByRadicalColumn( HomalgMatrix( "[ x ]", 1, 1, R ) ); V_{Q[x,y]}( <...> ) gap> B := ClosedSubsetOfSpec( "[ x^2 ]", R ); V_{Q[x,y]}( <...> ) gap> A = B; true gap> C := ClosedSubsetOfSpecByRadicalColumn( "[ y ]", R ); V_{Q[x,y]}( <...> ) gap> D := ClosedSubsetOfSpec( "[ x^2*y^3 ]", R ); V_{Q[x,y]}( <...> ) gap> A + C = D; true gap> T := TerminalObject( ZC ); V_{Q[x,y]}( <...> ) gap> Dimension( T ); 2 gap> I := InitialObject( ZC ); V_{Q[x,y]}( <...> ) gap> Dimension( I ); -1 gap> F := DistinguishedLocallyClosedPart( -( A * C ) ); V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> Display( F ); V( <> ) \ V( <y> )
gap> Q := HomalgFieldOfRationalsInSingular( ); Q gap> R := Q * "x,y"; Q[x,y] gap> I := HomalgMatrix( "y", 1, 1, R ); <A 1 x 1 matrix over an external ring> gap> x := ClosedSubsetOfSpec( I ); V_{Q[x,y]}( <...> ) gap> Display( x ); V( <y> ) gap> IsClosed( x ); true gap> Dimension( x ); 1 gap> y := ClosedSubsetOfSpec( "x", R ); V_{Q[x,y]}( <...> ) gap> d := ClosedSubsetOfSpec( "x+y-1", R ); V_{Q[x,y]}( <...> ) gap> xuy := x + y; V_{Q[x,y]}( <...> ) gap> Display( xuy ); { V( <y> ) ∪ V( <x> ) } gap> IsClosed( xuy ); true gap> mxuy := -xuy; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> Display( mxuy ); V( <> ) \ { V( <y> ) ∪ V( <x> ) } gap> IsClosed( mxuy ); false gap> IsOpen( mxuy ); true gap> xmy := x - y; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> Display( xmy ); V( <y> ) \ V( <x> ) gap> xmy2 := xmy - y; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> Display( xmy2 ); V( <y> ) \ V( <x> ) gap> lc := xuy - d; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> lc0 := lc - 0; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> IsIdenticalObj( lc, lc0 ); true gap> IsLocallyClosed( lc ); true gap> IsClosed( lc ); false gap> Dimension( lc ); 1 gap> tp := d * xuy; V_{Q[x,y]}( <...> ) gap> Dimension( tp ); 0 gap> c := lc + tp; ( V_{Q[x,y]}( I1 ) \ V_{Q[x,y]}( J1 ) ) ∪ ( V_{Q[x,y]}( I2 ) \ V_{Q[x,y]}( J2 ) ) gap> c0 := c - 0; ( V_{Q[x,y]}( I1 ) \ V_{Q[x,y]}( J1 ) ) ∪ ( V_{Q[x,y]}( I2 ) \ V_{Q[x,y]}( J2 ) ) gap> IsIdenticalObj( c, c0 ); true gap> c[1]; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> c[2]; V_{Q[x,y]}( I ) \ V_{Q[x,y]}( J ) gap> Dimension( c ); 1 gap> c = xuy; true gap> cc := CanonicalObject( c ); V_{Q[x,y]}( <...> ) gap> cc = xuy; true gap> t := c - lc; ( V_{Q[x,y]}( I1 ) \ V_{Q[x,y]}( J1 ) ) gap> Display( t ); V( <x+y-1,y^2-y,x+y-1,x*y> ) \ ∅ gap> IsClosed( t ); true gap> z := c - c; ( V_{Q[x,y]}( I1 ) \ V_{Q[x,y]}( J1 ) ) gap> Display( z ); V( <x*y> ) \ { V( <x+y-1,y^2-y> ) ∪ V( <x*y> ) } gap> z := StandardizedObject( z ); ( V_{Q[x,y]}( I1 ) \ V_{Q[x,y]}( J1 ) ) gap> Display( z ); ∅ \ ∅
generated by GAPDoc2HTML