Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Radical Computation
 4.1 Attributes

4 Radical Computation

4.1 Attributes

4.1-1 PreparationForRadicalOfIdeal
‣ PreparationForRadicalOfIdeal( I )( attribute )

Returns: a LeftSubmodule

Computes the radical of an ideal if the coefficients field is perfect and otherwise computes the FGLM data of the ideal \(J\) which is generated by the separable parts of the minimal polynomials of the indeterminates evaluated for the indeterminates of the ring.

4.1-2 RadicalOfIdeal
‣ RadicalOfIdeal( I )( attribute )

Returns: a LeftSubmodule

Computes the radical of a zero dimensional ideal I.

gap> LoadPackage( "PrimaryDecomposition" );
true
gap> Q := HomalgFieldOfRationalsInSingular( );
Q
gap> A := Q * "x,y,z";
Q[x,y,z]
gap> I := LeftSubmodule( "y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z", A );
<A torsion-free ideal given by 6 generators>
gap> radI := RadicalOfIdeal( I );
<A torsion-free ideal given by 6 generators>
gap> Display( radI );
y*z-x,  
x*z-y,  
y^2-z^2,
x*y-z,  
x^2-z^2,
z^3-z 

An ideal generated by the 6 entries of the above matrix
gap> IsSubset( I, radI );
true
gap> A := HomalgRingOfIntegersInSingular( 3, "t" ) * "x,y";
GF(3)(t)[x,y]
gap> J := LeftSubmodule( "x-t, y", A );
<A torsion-free ideal given by 2 generators>
gap> rad := RadicalOfIdeal( J^2 );
<A torsion-free ideal given by 2 generators>
gap> Display( rad );
y,    
-x+(t)

An ideal generated by the 2 entries of the above matrix

4.1-3 CompanionMatrix
‣ CompanionMatrix( mu )( operation )

Returns: a matrix

Computes the companion matrix of the monic univariate polynomial mu over a univariate ring.

gap> LoadPackage( "PrimaryDecomposition" );
true
gap> A := HomalgFieldOfRationalsInSingular() * "x,y,z";
Q[x,y,z]
gap> I := LeftSubmodule( "y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z", A );
<A torsion-free ideal given by 6 generators>
gap> R := A / I;
Q[x,y,z]/( y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z )
gap> r := "x^2+x*y+z" / R;
|[ x^2+x*y+z ]|
gap> mu := MinimalPolynomial( r );
t^3-2*t^2-3*t
gap> M := CompanionMatrix( mu );
<An unevaluated non-zero 3 x 3 matrix over an external ring>
gap> Display( M );
2,3,0,
1,0,0,
0,1,0 
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML