Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Radical Computation
 4.1 Attributes

4 Radical Computation

4.1 Attributes

4.1-1 PreparationForRadicalOfIdeal
‣ PreparationForRadicalOfIdeal( I )( attribute )

Returns: a LeftSubmodule

Computes the radical of an ideal if the coefficients field is perfect and otherwise computes the FGLM data of the ideal J which is generated by the separable parts of the minimal polynomials of the indeterminates evaluated for the indeterminates of the ring.

4.1-2 RadicalOfIdeal
‣ RadicalOfIdeal( I )( attribute )

Returns: a LeftSubmodule

Computes the radical of a zero dimensional ideal I.

gap> LoadPackage( "PrimaryDecomposition" );
true
gap> Q := HomalgFieldOfRationalsInSingular( );
Q
gap> A := Q * "x,y,z";
Q[x,y,z]
gap> I := LeftSubmodule( "y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z", A );
<A torsion-free ideal given by 6 generators>
gap> radI := RadicalOfIdeal( I );
<A torsion-free ideal given by 6 generators>
gap> Display( radI );
y*z-x,  
x*z-y,  
y^2-z^2,
x*y-z,  
x^2-z^2,
z^3-z 

An ideal generated by the 6 entries of the above matrix
gap> IsSubset( I, radI );
true
gap> A := HomalgRingOfIntegersInSingular( 3, "t" ) * "x,y";
GF(3)(t)[x,y]
gap> J := LeftSubmodule( "x-t, y", A );
<A torsion-free ideal given by 2 generators>
gap> rad := RadicalOfIdeal( J^2 );
<A torsion-free ideal given by 2 generators>
gap> Display( rad );
y,    
-x+(t)

An ideal generated by the 2 entries of the above matrix

4.1-3 CompanionMatrix
‣ CompanionMatrix( mu )( operation )

Returns: a matrix

Computes the companion matrix of the monic univariate polynomial mu over a univariate ring.

gap> LoadPackage( "PrimaryDecomposition" );
true
gap> A := HomalgFieldOfRationalsInSingular() * "x,y,z";
Q[x,y,z]
gap> I := LeftSubmodule( "y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z", A );
<A torsion-free ideal given by 6 generators>
gap> R := A / I;
Q[x,y,z]/( y*z-x, x*z-y, y^2-z^2, x*y-z, x^2-z^2, z^3-z )
gap> r := "x^2+x*y+z" / R;
|[ x^2+x*y+z ]|
gap> mu := MinimalPolynomial( r );
t^3-2*t^2-3*t
gap> M := CompanionMatrix( mu );
<An unevaluated non-zero 3 x 3 matrix over an external ring>
gap> Display( M );
2,3,0,
1,0,0,
0,1,0 
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML