‣ MeetSemilatticeOfMultipleDifferences( L ) | ( attribute ) |
Returns: a CAP category
Construct the meet-semilattice of multiple differences from the lattice L.
‣ AsMultipleDifference( D1, D2, ... ) | ( function ) |
Returns: an object in a CAP category
If D1=\(A1-B1\), D2=\(A2-B2\), ..., then the output is DirectProduct\((A1,A2,...)\) - Coproduct\((B1,B2,...)\).
‣ AsSingleDifference( A ) | ( attribute ) |
‣ ListOfSingleDifferences( A ) | ( operation ) |
Returns: a list of CAP morphism
A list of formal single differences in the underlying lattice representing the formal multiple difference A.
9.3-2 \[\]‣ \[\]( arg1, arg2 ) | ( operation ) |
‣ IsMeetSemilatticeOfMultipleDifferences( arg ) | ( filter ) |
Returns: true or false
The GAP category of a meet-semilattice of multiple differences.
‣ IsObjectInMeetSemilatticeOfMultipleDifferences( object ) | ( filter ) |
Returns: true or false
The GAP category of objects in a meet-semilattice of multiple differences.
‣ IsMorphismInMeetSemilatticeOfMultipleDifferences( morphism ) | ( filter ) |
Returns: true or false
The GAP category of morphisms in a meet-semilattice of multiple differences.
generated by GAPDoc2HTML