‣ ConegationOnObjects( a ) | ( attribute ) |
Returns: an object
The argument is an object \(a\). The output is its co-negated object \(\ulcorner a\).
‣ ConegationOnMorphisms( alpha ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}( \ulcorner b, \ulcorner a )\).
The argument is a morphism \(\alpha: a \rightarrow b\). The output is its negated morphism \(\ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a\).
‣ ConegationOnMorphismsWithGivenConegations( s, alpha, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}( \ulcorner b, \ulcorner a )\).
The argument is an object \(s = \ulcorner b\), a morphism \(\alpha: a \rightarrow b\), and an object \(r = \ulcorner a\). The output is the negated morphism \(\ulcorner \alpha: \ulcorner b \rightarrow \ulcorner a\).
‣ MorphismFromDoubleConegation( a ) | ( attribute ) |
Returns: a morphism in \(\mathrm{Hom}(\ulcorner\ulcorner a, a)\).
The argument is an object \(a\). The output is the morphism from the double conegation \(\ulcorner\ulcorner a \rightarrow a\).
‣ MorphismFromDoubleConegationWithGivenDoubleConegation( a, r ) | ( operation ) |
Returns: a morphism in \(\mathrm{Hom}(\ulcorner\ulcorner a, a)\).
The arguments are an object \(a\), and an object \(r = \ulcorner\ulcorner a\). The output is the morphism from the double conegation \(\ulcorner\ulcorner a \rightarrow a\).
‣ StableInternalCoHom( V, W ) | ( operation ) |
Returns: a CAP object
Return the stable internal coHom: \(\mathrm{\underline{coHom}}(\mathrm{\underline{coHom}}(...\mathrm{\underline{coHom}}(V,W)...,W),W)\).
‣ AddConegationOnMorphisms( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnMorphisms. \(F: ( alpha ) \mapsto \mathtt{ConegationOnMorphisms}(alpha)\).
‣ AddConegationOnMorphismsWithGivenConegations( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnMorphismsWithGivenConegations. \(F: ( s, alpha, r ) \mapsto \mathtt{ConegationOnMorphismsWithGivenConegations}(s, alpha, r)\).
‣ AddConegationOnObjects( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation ConegationOnObjects. \(F: ( arg2 ) \mapsto \mathtt{ConegationOnObjects}(arg2)\).
‣ AddMorphismFromDoubleConegation( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromDoubleConegation. \(F: ( a ) \mapsto \mathtt{MorphismFromDoubleConegation}(a)\).
‣ AddMorphismFromDoubleConegationWithGivenDoubleConegation( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category \(C\) and a function \(F\). This operation adds the given function \(F\) to the category for the basic operation MorphismFromDoubleConegationWithGivenDoubleConegation. \(F: ( a, s ) \mapsto \mathtt{MorphismFromDoubleConegationWithGivenDoubleConegation}(a, s)\).
‣ IsCoHeytingAlgebroid( C ) | ( property ) |
Returns: true or false
The property of C being a co-Heyting algebroid.
‣ IsCoHeytingAlgebra( C ) | ( property ) |
Returns: true or false
The property of C being a co-Heyting algebra.
generated by GAPDoc2HTML