Goto Chapter: Top 1 2 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[BLH11] Barakat, M. and Lange-Hegermann, M., An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl., 10 (2) (2011), 269--293
((http://arxiv.org/abs/1003.1943)).

[CLO05] Cox, D. A., Little, J. and O'Shea, D., Using algebraic geometry, Springer, Second edition, Graduate Texts in Mathematics, 185, New York (2005), xii+572 pages.

[Fab08] Fabianska, A., \(\mathtt{QuillenSuslin}\): A \(\mathsf{Maple}\) package to compute a free basis of a projective module over the polynomial ring (2006-2008)
((http://wwwb.math.rwth-aachen.de/QuillenSuslin)).

[FQ07] Fabianska, A. and Quadrat, A., Applications of the Quillen-Suslin Theorem in multidimensional systems theory, in H. Park et G. Regensburger (eds.), Gröbner Bases in Control Theory and Signal Processing, de Gruyter, Radon Series on Computational and Applied Mathematics 3 (2007), 23-106.

[hpa13] The homalg project authors,, The \(\mathtt{homalg}\) project -- Algorithmic Homological Algebra (2003--2013), (http://homalg.math.rwth-aachen.de/).

[LW00] Laubenbacher, R. C. and Woodburn, C. J., A new algorithm for the Quillen-Suslin theorem, Beiträge Algebra Geom., 41 (1) (2000), 23--31.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 Bib Ind

generated by GAPDoc2HTML