[BLH11] Barakat, M. and Lange-Hegermann, M.,
An axiomatic setup for algorithmic homological algebra and an
alternative approach to localization,
J. Algebra Appl.,
10 (2)
(2011),
269--293
((http://arxiv.org/abs/1003.1943)).
[CLO05] Cox, D. A., Little, J. and O'Shea, D., Using algebraic geometry, Springer, Second edition, Graduate Texts in Mathematics, 185, New York (2005), xii+572 pages.
[Fab08] Fabianska, A.,
mathttQuillenSuslin: A mathsfMaple package to
compute a free basis of a projective module over the polynomial
ring
(2006-2008)
((http://wwwb.math.rwth-aachen.de/QuillenSuslin)).
[FQ07] Fabianska, A. and Quadrat, A., Applications of the Quillen-Suslin Theorem in multidimensional systems theory, in H. Park et G. Regensburger (eds.), Gröbner Bases in Control Theory and Signal Processing, de Gruyter, Radon Series on Computational and Applied Mathematics 3 (2007), 23-106.
[hpa13] The homalg project authors,, The mathtthomalg project -- Algorithmic Homological Algebra (2003--2013), (http://homalg.math.rwth-aachen.de/).
[LW00] Laubenbacher, R. C. and Woodburn, C. J., A new algorithm for the Quillen-Suslin theorem, Beiträge Algebra Geom., 41 (1) (2000), 23--31.
generated by GAPDoc2HTML