Goto Chapter: Top 1 2 3 4 5 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Slice categories (lazy data structure)
 5.1 GAP categories
 5.2 Attributes
 5.3 Constructors
 5.4 Examples

5 Slice categories (lazy data structure)

5.1 GAP categories

5.1-1 IsLazySliceCategory
‣ IsLazySliceCategory( arg )( filter )

Returns: true or false

The GAP category of an eager slice category.

5.1-2 IsCellInALazySliceCategory
‣ IsCellInALazySliceCategory( arg )( filter )

Returns: true or false

The GAP category of cells in an eager slice category.

5.1-3 IsObjectInALazySliceCategory
‣ IsObjectInALazySliceCategory( arg )( filter )

Returns: true or false

The GAP category of objects in an eager slice category.

5.1-4 IsMorphismInALazySliceCategory
‣ IsMorphismInALazySliceCategory( arg )( filter )

Returns: true or false

The GAP category of morphisms in an eager slice category.

5.1-5 IsLazySliceCategoryOverTensorUnit
‣ IsLazySliceCategoryOverTensorUnit( arg )( filter )

Returns: true or false

The GAP category of an eager slice category over the tensor unit.

5.1-6 IsCellInALazySliceCategoryOverTensorUnit
‣ IsCellInALazySliceCategoryOverTensorUnit( arg )( filter )

Returns: true or false

The GAP category of cells in an eager slice category over the tensor unit.

5.1-7 IsObjectInALazySliceCategoryOverTensorUnit
‣ IsObjectInALazySliceCategoryOverTensorUnit( arg )( filter )

Returns: true or false

The GAP category of objects in an eager slice category over the tensor unit.

5.1-8 IsMorphismInALazySliceCategoryOverTensorUnit
‣ IsMorphismInALazySliceCategoryOverTensorUnit( arg )( filter )

Returns: true or false

The GAP category of morphisms in an eager slice category over the tensor unit.

5.2 Attributes

5.2-1 UnderlyingMorphismList
‣ UnderlyingMorphismList( object )( attribute )

Returns: a list

The list of morphisms in the ambient category underlying object.

5.3 Constructors

5.3-1 LazySliceCategory
‣ LazySliceCategory( B )( attribute )

5.3-2 LazySliceCategoryOverTensorUnit
‣ LazySliceCategoryOverTensorUnit( M )( attribute )

5.3-3 AsSliceCategoryCell
‣ AsSliceCategoryCell( L )( attribute )

5.4 Examples

5.4-1 LazySliceCategory
gap> LoadPackage( "SubcategoriesForCAP", false );
true
gap> LoadPackage( "FinSetsForCAP", ">= 2022.05-05", false );
true
gap> B := FinSet( 2 );
|2|
gap> o0 := AsSliceCategoryCell( [ MapOfFinSets( B, [ 1, 1 ], B  ) ] );
An object in the lazy slice category given by: |2| → |2|
gap> o1 := AsSliceCategoryCell( [ MapOfFinSets( FinSet( 3 ), [ 0, 1, 0 ], B ) ] );
An object in the lazy slice category given by: |3| → |2|
gap> o2 := AsSliceCategoryCell( [ MapOfFinSets( FinSet( 4 ), [ 1, 0, 1, 0 ], B ) ] );
An object in the lazy slice category given by: |4| → |2|
gap> IsWellDefined( o0 );
true
gap> IsWellDefined( o1 );
true
gap> IsWellDefined( o2 );
true
gap> IsHomSetInhabited( o1, o0 );
false
gap> IsHomSetInhabited( o0, o1 );
true
gap> IsHomSetInhabited( o1, o2 );
true
gap> IsHomSetInhabited( o2, o1 );
true
gap> iota := UniversalMorphismFromInitialObject( o1 );
A morphism in the lazy slice category given by: |0| → |3|
gap> Display( iota );
∅ ⱶ[  ]→ { 0, 1, 2 }

A morphism in the lazy slice category given by the above data
gap> IsInitial( Source( iota ) );
true
gap> tau := UniversalMorphismIntoTerminalObject( o2 );
A morphism in the lazy slice category given by: |4| → |2|
gap> Display( tau );
{ 0,..., 3 } ⱶ[ 1, 0, 1, 0 ]→ { 0, 1 }

A morphism in the lazy slice category given by the above data
gap> IsTerminal( Target( tau ) );
true
gap> n := MapOfFinSets( FinSet( 3 ), [ 2, 0, 3 ], FinSet( 4 ) );
|3| → |4|
gap> IsWellDefined( n );
true
gap> n := AsSliceCategoryCell( o1, n, o2 );
A morphism in the lazy slice category given by: |3| → |4|
gap> IsWellDefined( n );
false
gap> m1 := MapOfFinSets( FinSet( 3 ), [ 1, 0, 3 ], FinSet( 4 ) );
|3| → |4|
gap> m1 := AsSliceCategoryCell( o1, m1, o2 );
A morphism in the lazy slice category given by: |3| → |4|
gap> IsWellDefined( m1 );
true
gap> IsSplitEpimorphism( m1 );
false
gap> m2 := MapOfFinSets( FinSet( 4 ), [ 1, 2, 1, 0 ], FinSet( 3 ) );
|4| → |3|
gap> m2 := AsSliceCategoryCell( o2, m2, o1 );
A morphism in the lazy slice category given by: |4| → |3|
gap> IsWellDefined( m2 );
true
gap> IsSplitEpimorphism( m2 );
true
gap> m3 := PreCompose( m1, m2 );
A morphism in the lazy slice category given by: |3| → |3|
gap> IsWellDefined( m3 );
true
gap> IsOne( m3 );
false
gap> m4 := Inverse( m3 );
A morphism in the lazy slice category given by: |3| → |3|
gap> IsWellDefined( m4 );
true
gap> m5 := PreCompose( m2, m1 );
A morphism in the lazy slice category given by: |4| → |4|
gap> IsWellDefined( m5 );
true
gap> IsOne( m5 );
false
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Ind

generated by GAPDoc2HTML