Goto Chapter: Top 1 2 3 4 5 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Full subcategories
 2.1 GAP categories
 2.2 Global variables
 2.3 Constructors
 2.4 Functors

2 Full subcategories

2.1 GAP categories

2.1-1 IsCapFullSubcategory
‣ IsCapFullSubcategory( arg )( filter )

Returns: true or false

The GAP category of a full subcategory.

2.1-2 IsCapFullSubcategoryGeneratedByFiniteNumberOfObjects
‣ IsCapFullSubcategoryGeneratedByFiniteNumberOfObjects( arg )( filter )

Returns: true or false

The GAP category of a full subcategory generated by finite number of objects.

2.1-3 IsCapFullSubcategoryDefinedByObjectMembershipFunction
‣ IsCapFullSubcategoryDefinedByObjectMembershipFunction( arg )( filter )

Returns: true or false

The GAP category of a full subcategory defined by an object-membership function.

2.1-4 IsCellInAFullSubcategory
‣ IsCellInAFullSubcategory( arg )( filter )

Returns: true or false

The GAP category of cells in a full subcategory.

2.1-5 IsObjectInAFullSubcategory
‣ IsObjectInAFullSubcategory( arg )( filter )

Returns: true or false

The GAP category of objects in a full subcategory.

2.1-6 IsMorphismInAFullSubcategory
‣ IsMorphismInAFullSubcategory( arg )( filter )

Returns: true or false

The GAP category of morphisms in a full subcategory.

2.2 Global variables

2.2-1 CAP_INTERNAL_METHOD_NAME_LIST_FOR_FULL_SUBCATEGORY
‣ CAP_INTERNAL_METHOD_NAME_LIST_FOR_FULL_SUBCATEGORY( global variable )

2.2-2 CAP_INTERNAL_METHOD_NAME_LIST_FOR_ADDITIVE_FULL_SUBCATEGORY
‣ CAP_INTERNAL_METHOD_NAME_LIST_FOR_ADDITIVE_FULL_SUBCATEGORY( global variable )

2.3 Constructors

2.3-1 FullSubcategory
‣ FullSubcategory( C, name )( operation )

2.3-2 FullSubcategoryGeneratedByListOfObjects
‣ FullSubcategoryGeneratedByListOfObjects( L )( function )

Returns: CapFullSubcategory

The input is a list of objects L in the same category. The output is the full subcategory generated by L.

2.3-3 FullSubcategoryOfIndecomposableProjectiveObjects
‣ FullSubcategoryOfIndecomposableProjectiveObjects( C )( attribute )

Returns: CapFullSubcategory

The input is a category C in which the operation IndecomposableProjectiveObjects is computable. The output is the full subcategory of C generated by the output of IndecomposableProjectiveObjects(C).

2.3-4 FullSubcategoryOfIndecomposableInjectiveObjects
‣ FullSubcategoryOfIndecomposableInjectiveObjects( C )( attribute )

Returns: CapFullSubcategory

The input is a category C in which the operation IndecomposableInjectiveObjects is computable. The output is the full subcategory of C generated by the output of IndecomposableInjectiveObjects(C).

2.3-5 FullSubcategoryByObjectMembershipFunction
‣ FullSubcategoryByObjectMembershipFunction( C, membership_func )( function )

Returns: CapFullSubcategory

The input is a category C and an object membership function membership_func. The output is the full subcategory of C determined by membership_func.

2.3-6 FullSubcategoryOfProjectiveObjects
‣ FullSubcategoryOfProjectiveObjects( C )( attribute )

Returns: CapFullSubcategory

The input is an abelian category C with enough projective objects. The output is the full subcategory of C generated by the projective objects in C.

2.3-7 FullSubcategoryOfInjectiveObjects
‣ FullSubcategoryOfInjectiveObjects( C )( attribute )

Returns: CapFullSubcategory

The input is an abelian category C with enough injective objects. The output is the full subcategory of C generated by the injective objects in C.

2.4 Functors

2.4-1 InclusionFunctor
‣ InclusionFunctor( A )( attribute )

Returns: CapFunctor

The natural embedding functor from A to AmbientCategory(A).

2.4-2 RestrictFunctorToFullSubcategoryOfSource
‣ RestrictFunctorToFullSubcategoryOfSource( F, full )( operation )

Returns: CapFunctor

The arguments are a functor F and a full subcategory full of Source(F). The output is the restriction functor \(F_{full}\):full\(\to\)Range(F).

2.4-3 RestrictFunctorToFullSubcategoryOfRange
‣ RestrictFunctorToFullSubcategoryOfRange( F, full )( operation )

Returns: CapFunctor

The arguments are a functor F and a full subcategory full of Range(F). The output is the restriction functor \(F_{full}\):Source(F)\(\to\)full.

2.4-4 RestrictFunctorToFullSubcategories
‣ RestrictFunctorToFullSubcategories( F, full_1, full_2 )( operation )

Returns: CapFunctor

The arguments are a functor F and two full subcategories full_1 of Source(F) and full_2 of Range(F). The output is the restriction functor \(F_{full}\):full_1\(\to\)full_2.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Ind

generated by GAPDoc2HTML