gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> category := IntrinsicCategory( LeftPresentations( R ) ); IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> M := AsLeftPresentation( HomalgMatrix( "[ 1, x, 0, 1 ]", 2, 2, R ) ); <An object in Category of left presentations of Q[x,y]> gap> phi := CoverByFreeModule( M ); <A morphism in Category of left presentations of Q[x,y]> gap> M := Intrinsify( category, M ); <an intrinsic object on active cell: <An object in Category of left presentations of Q[x,y]>> gap> F := Intrinsify( category, Source( phi ) ); <an intrinsic object on active cell: <A projective object in Category of left presentations of Q[x,y]>> gap> phi := Intrinsify( phi, F, 1, M, 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> Display( phi ); 1,0, 0,1 A morphism in Category of left presentations of Q[x,y] gap> m1 := MorphismFromZeroObject( M ); <an intrinsic morphism on active cell: <A zero, split monomorphism in Category of left presentations of Q[x,y]>> gap> m2 := MorphismIntoZeroObject( M ); <an intrinsic morphism on active cell: <A zero, split epimorphism in Category of left presentations of Q[x,y]>> gap> IsZero( M ); true gap> ActiveCell( m1 ); <A zero, isomorphism in Category of left presentations of Q[x,y]> gap> ActiveCell( m2 ); <A zero, isomorphism in Category of left presentations of Q[x,y]> gap> Display( phi ); (an empty 2 x 0 matrix) A zero, split epimorphism in Category of left presentations of Q[x,y]
gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> category := IntrinsicCategory( LeftPresentations( R ) ); IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> M := AsLeftPresentation( HomalgMatrix( "[ 1, x, 0, 1 ]", 2, 2, R ) ); <An object in Category of left presentations of Q[x,y]> gap> phi := CoverByFreeModule( M ); <A morphism in Category of left presentations of Q[x,y]> gap> M := Intrinsify( category, M ); <an intrinsic object on active cell: <An object in Category of left presentations of Q[x,y]>> gap> F := Intrinsify( category, Source( phi ) ); <an intrinsic object on active cell: <A projective object in Category of left presentations of Q[x,y]>> gap> phi := Intrinsify( phi, F, 1, M, 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 1, 1 ] gap> Id := IdentityFunctor( category ); Identity functor of IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> lg := FunctorLessGeneratorsLeft( R ); Less generators for Category of left presentations of Q[x,y] gap> LG := Intrinsify( lg, category ); Intrinsic version of Less generators for Category of left presentations of Q[x,y] gap> etaLG := Intrinsify( > NaturalIsomorphismFromIdentityToLessGeneratorsLeft( R ), Id, LG ); Intrinsic version of Natural isomorphism from Id to Less generators for Category of left presentations of Q[x,y] gap> IdLG := TurnAutoequivalenceIntoIdentityFunctor( etaLG ); Intrinsic version of Less generators for Category of left presentations of Q[x,y] as identity functor with side effects gap> ApplyFunctor( IdLG, phi ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 2, 1 ] gap> ApplyFunctor( IdLG, phi ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 2, 1 ]
gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> category := IntrinsicCategory( LeftPresentations( R ) ); IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> M := AsLeftPresentation( HomalgMatrix( "[ 1, x, 0, 1 ]", 2, 2, R ) ); <An object in Category of left presentations of Q[x,y]> gap> phi := CoverByFreeModule( M ); <A morphism in Category of left presentations of Q[x,y]> gap> M := Intrinsify( category, M ); <an intrinsic object on active cell: <An object in Category of left presentations of Q[x,y]>> gap> F := Intrinsify( category, Source( phi ) ); <an intrinsic object on active cell: <A projective object in Category of left presentations of Q[x,y]>> gap> phi := Intrinsify( phi, F, 1, M, 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 1, 1 ] gap> Id := IdentityFunctor( category ); Identity functor of IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> sm := FunctorStandardModuleLeft( R ); Standard module for Category of left presentations of Q[x,y] gap> SM := Intrinsify( sm, category ); Intrinsic version of Standard module for Category of left presentations of Q[x,y] gap> etaSM := Intrinsify( > NaturalIsomorphismFromIdentityToStandardModuleLeft( R ), Id, SM ); Intrinsic version of Natural isomorphism from Id to Standard module for Category of left presentations of Q[x,y] gap> IdSM := TurnAutoequivalenceIntoIdentityFunctor( etaSM ); Intrinsic version of Standard module for Category of left presentations of Q[x,y] as identity functor with side effects gap> ApplyFunctor( IdSM, phi ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 2, 1 ] gap> ApplyFunctor( IdSM, phi ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> PositionOfActiveCell( phi ); [ 1, 2, 1 ]
gap> QQ := HomalgFieldOfRationalsInSingular( );; gap> R := QQ * "x,y"; Q[x,y] gap> category := IntrinsicCategory( LeftPresentations( R ) ); IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> S := Intrinsify( category, FreeLeftPresentation( 1, R ) ); <an intrinsic object on active cell: <A projective object in Category of left presentations of Q[x,y]>> gap> object_func := function( i ) return S; end; function( i ) ... end gap> morphism_func := function( i ) return IdentityMorphism( S ); end; function( i ) ... end gap> C0 := ZFunctorObjectExtendedByInitialAndIdentity( object_func, morphism_func, category, 0, 4 ); <An object in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> S2 := Intrinsify( category, FreeLeftPresentation( 2, R ) ); <an intrinsic object on active cell: <A projective object in Category of left presentations of Q[x,y]>> gap> C1 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S2, S ], 1 ) ], 2 ); <An object in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> C1 := ZFunctorObjectExtendedByInitialAndIdentity( C1, 2, 3 ); <An object in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> C2 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S, S ], 1 ) ], 3 ); <An object in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> C2 := ZFunctorObjectExtendedByInitialAndIdentity( C2, 3, 4 ); <An object in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta_1_3 := PresentationMorphism( ActiveCell( C1[3] ), HomalgMatrix( [ [ "x^2" ], [ "xy" ], [ "y^3"] ], 3, 1, R ), ActiveCell( C0[3] ) ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_1_3 := Intrinsify( delta_1_3, C1[3], 1, C0[3], 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> delta_1_2 := PresentationMorphism( ActiveCell( C1[2] ), HomalgMatrix( [ [ "x^2" ], [ "xy" ] ], 2, 1, R ), ActiveCell( C0[2] ) ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_1_2 := Intrinsify( delta_1_2, C1[2], 1, C0[2], 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> delta1 := ZFunctorMorphism( C1, [ UniversalMorphismFromInitialObject( C0[1] ), UniversalMorphismFromInitialObject( C0[1] ), delta_1_2, delta_1_3 ], 0, C0 ); <A morphism in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta1 := ZFunctorMorphismExtendedByInitialAndIdentity( delta1, 0, 3 ); <A morphism in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta1 := AsAscendingFilteredMorphism( delta1 ); <A morphism in Ascending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta_2_3 := PresentationMorphism( ActiveCell( C2[3] ), HomalgMatrix( [ [ "y", "-x", "0" ] ], 1, 3, R ), ActiveCell( C1[3] ) ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_2_3 := Intrinsify( delta_2_3, C2[3], 1, C1[3], 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> delta_2_4 := PresentationMorphism( ActiveCell( C2[4] ), HomalgMatrix( [ [ "y", "-x", "0" ], [ "0", "y^2", "-x" ] ], 2, 3, R ), ActiveCell( C1[4] ) ); <A morphism in Category of left presentations of Q[x,y]> gap> delta_2_4 := Intrinsify( delta_2_4, C2[4], 1, C1[4], 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> delta2 := ZFunctorMorphism( C2, [ UniversalMorphismFromInitialObject( C1[2] ), delta_2_3, delta_2_4 ], 2, C1 ); <A morphism in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta2 := ZFunctorMorphismExtendedByInitialAndIdentity( delta2, 2, 4 ); <A morphism in Functors from integers into IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> delta2 := AsAscendingFilteredMorphism( delta2 ); <A morphism in Ascending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> SetIsAdditiveCategory( CategoryOfAscendingFilteredObjects( category ), true ); gap> complex := ZFunctorObjectFromMorphismList( [ delta2, delta1 ], -2 ); <An object in Functors from integers into Ascending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> complex := AsComplex( complex ); <An object in Complex category of Ascending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> LessGenFunctor := FunctorLessGeneratorsLeft( R ); Less generators for Category of left presentations of Q[x,y] gap> Id := IdentityFunctor( category ); Identity functor of IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> LessGenFunctor := Intrinsify( LessGenFunctor, category ); Intrinsic version of Less generators for Category of left presentations of Q[x,y] gap> etaLG := Intrinsify( > NaturalIsomorphismFromIdentityToLessGeneratorsLeft( R ), Id, LessGenFunctor ); Intrinsic version of Natural isomorphism from Id to Less generators for Category of left presentations of Q[x,y] gap> IdLG := TurnAutoequivalenceIntoIdentityFunctor( etaLG ); Intrinsic version of Less generators for Category of left presentations of Q[x,y] as identity functor with side effects gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 0, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 1, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 2, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 1 matrix) gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 3, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); x*y, x^2 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 4, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 5, 0, 0 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); x*y, x^2, y^3 gap> s := SpectralSequenceDifferentialOfAscendingFilteredComplex( complex, 3, 3, -2 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, s ) ) ) ); y^3 gap> AscToDescFunctor := AscendingToDescendingFilteredObjectFunctor( category ); Ascending to descending filtered object functor of IntrinsicCategory( Category of left presentations of Q[x,y] ) gap> cocomplex := ZFunctorObjectFromMorphismList( [ ApplyFunctor( AscToDescFunctor, delta2 ), ApplyFunctor( AscToDescFunctor, delta1 ) ], -2 ); <An object in Functors from integers into Descending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> SetIsAdditiveCategory( CategoryOfDescendingFilteredObjects( category ), true ); gap> cocomplex := AsCocomplex( cocomplex ); <An object in Cocomplex category of Descending filtered object category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 0, -2, 1 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 1, -2, 1 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 2 matrix) gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); x,-y gap> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 3, -2, 1 ); <A morphism in Generalized morphism category of IntrinsicCategory( Category of left presentations of Q[x,y] )> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ) ); (an empty 0 x 0 matrix) gap> s := SpectralSequenceDifferentialOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); <an intrinsic morphism on active cell: <A morphism in Category of left presentations of Q[x,y]>> gap> Display( UnderlyingMatrix( ActiveCell( ApplyFunctor( LessGenFunctor, s ) ) ) ); x*y, x^2
generated by GAPDoc2HTML