Goto Chapter: Top 1 2 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Intrinsic Categories
 1.1 Categories
 1.2 Technical stuff
 1.3 Constructors
 1.4 Attributes
 1.5 Operations

1 Intrinsic Categories

1.1 Categories

1.1-1 IsIntrinsicCategory
‣ IsIntrinsicCategory( arg )( filter )

Returns: true or false

The GAP category of an intrinsic CAP category.

1.1-2 IsCapCategoryIntrinsicCell
‣ IsCapCategoryIntrinsicCell( arg )( filter )

Returns: true or false

The GAP category of intrinsic cells in an intrinsic CAP category.

1.1-3 IsCapCategoryIntrinsicObject
‣ IsCapCategoryIntrinsicObject( arg )( filter )

Returns: true or false

The GAP category of intrinsic objects in an intrinsic CAP category.

1.1-4 IsCapCategoryIntrinsicMorphism
‣ IsCapCategoryIntrinsicMorphism( arg )( filter )

Returns: true or false

The GAP category of intrinsic morphisms in an intrinsic CAP category.

1.2 Technical stuff

1.2-1 CanonicalizeIfZero
‣ CanonicalizeIfZero( filter )

1.2-2 IsSafeForSideEffects
‣ IsSafeForSideEffects( arg )( property )

Returns: true or false

1.2-3 CanonicalizedToZero
‣ CanonicalizedToZero( arg )( property )

Returns: true or false

1.3 Constructors

1.3-1 IntrinsifyObject
‣ IntrinsifyObject( C, o )( operation )

Returns: an object in a CAP-category

Create an intrinsic object out of the object o.

1.3-2 Intrinsify
‣ Intrinsify( C, o )( operation )

Returns: an object in a CAP-category

The default method is IntrinsifyObject. This is the method to overload depending on the context.

1.3-3 IntrinsifyMorphism
‣ IntrinsifyMorphism( m, s, i, t, j )( operation )
‣ Intrinsify( m, s, i, t, j )( operation )
‣ Intrinsify( C, m )( operation )

Returns: a morphism in a CAP-category

Create out of the morphism m an intrinsic morphism with source CertainCell(s,i) and target CertainCell(t,j). Create out of the morphism m an intrinsic morphism with source CertainCell(s,i) and target CertainCell(t,j). In the two argument version create an intrinsic morphism out of the morphism m after intrinsifying its source and target.

1.3-4 Intrinsify
‣ Intrinsify( F, name, A, B )( operation )
‣ Intrinsify( F, A, B )( operation )
‣ Intrinsify( F, name, A )( operation )
‣ Intrinsify( F, A )( operation )

Intrinsify a functor ... Intrinsify a functor ... Intrinsify an endofunctor ... Intrinsify an endofunctor ...

1.3-5 Intrinsify
‣ Intrinsify( eta, name, A, B )( operation )
‣ Intrinsify( eta, A, B )( operation )

Intrinsify a natural transformation Intrinsify a natural transformation

1.3-6 TurnAutoequivalenceIntoIdentityFunctor
‣ TurnAutoequivalenceIntoIdentityFunctor( eta )( operation )

Returns: a functor

Turn the range of the natural isomorphism eta into the identity functor and turn eta into the identity natural transformation.

1.3-7 CanonicalizeZeroObjectsAsIdentityFunctor
‣ CanonicalizeZeroObjectsAsIdentityFunctor( category )( attribute )

Returns: a functor

Turn FunctorCanonicalizeZeroObjects(category) into the identity functor.

1.3-8 CanonicalizeZeroMorphismsAsIdentityFunctor
‣ CanonicalizeZeroMorphismsAsIdentityFunctor( category )( attribute )

Returns: a CAP functor

Turn FunctorCanonicalizeZeroMorphisms(category) into the identity functor.

1.3-9 IntrinsicCategory
‣ IntrinsicCategory( C )( operation )

Returns: a CAP category

Create in the sense explained below an intrinsic category out of the category C. The procedure understands five options:

If strict=true then the CAP's congruence relation on the Hom-setoids is divided out. The argument todo_func is a function which will be applied in all CAP constructions CAP_oper producing a morphism to the argument list of CAP_oper (as first argument) and the output of CAP_oper (as second argument). If the option strict is not specified it defaults to true. If filter_obj is not specified it defaults to IsCapCategoryIntrinsicObject. If filter_mor is not specified it defaults to IsCapCategoryIntrinsicMorphism. If filter_end is not specified it defaults to IsCapCategoryIntrinsicMorphism. If todo is not specified it defaults to ReturnNothing.

1.4 Attributes

1.4-1 UnderlyingCategory
‣ UnderlyingCategory( C )( attribute )

The category underlying the intrinsic category C.

1.5 Operations

1.5-1 IsLockedObject
‣ IsLockedObject( c )( operation )

Check whether the intrinsic object c is locked or not.

1.5-2 PositionOfLastStoredCell
‣ PositionOfLastStoredCell( c )( operation )

Return the position of the last stored cell underlying the intrinsic cell c.

1.5-3 CertainCell
‣ CertainCell( o, i )( operation )

Return the i-th object underlying the intrinsic object o.

1.5-4 CertainCell
‣ CertainCell( m, i, j, k )( operation )

Return the (i,j,k)-th morphism underlying the intrinsic cell m.

1.5-5 CertainCell
‣ CertainCell( m, i, j )( operation )

Return the (i,j)-th morphism underlying the intrinsic cell m.

1.5-6 PositionOfActiveCell
‣ PositionOfActiveCell( c )( operation )

Return the position of the active cell underlying the intrinsic cell c.

1.5-7 SetPositionOfActiveCell
‣ SetPositionOfActiveCell( c, p )( operation )

Set the position of the active cell underlying the intrinsic cell c using p.

1.5-8 ActiveCell
‣ ActiveCell( c )( operation )

Return the active cell underlying the intrinsic cell c.

1.5-9 AddTransitionIsomorphism
‣ AddTransitionIsomorphism( o, s, eta )( operation )

Add the isomorphism eta to the record of transition isomorphisms. Source( eta ) must be equal to CertainCell( o, s ).

1.5-10 AddTransitionIsomorphism
‣ AddTransitionIsomorphism( o, eta, t )( operation )
‣ AddTransitionIsomorphism( o, s, eta, t )( operation )

In the second version the Range( eta ) must be equal to CertainCell( o, t ). In the third version the Range( eta ) must be equal to CertainCell( o, t ) and the Source( eta ) must be equal to CertainCell( o, s ).

1.5-11 TransitionIsomorphism
‣ TransitionIsomorphism( o, s, t )( operation )

Return the transition isomorphism of the intrinsic object o at position (s,t).

1.5-12 AddToIntrinsicMorphism
‣ AddToIntrinsicMorphism( mor, m, s, t )( operation )

Add the morphism m to the intrinsic morphism mor at position [ s, t, ? ].

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 Ind

generated by GAPDoc2HTML