‣ FinitelyZGradedClosureCategory ( C ) | ( attribute ) |
Returns: a CAP category
Construct the negatively \(Z\)-graded closure of the category C.
gap> LoadPackage( "GradedCategories" ); true gap> LoadPackage( "LinearAlgebraForCAP" ); true gap> Q := HomalgFieldOfRationals( ); Q gap> Qmat := MatrixCategory( Q ); Category of matrices over Q gap> ZQmat := FinitelyZGradedClosureCategory( Qmat ); FinitelyZGradedClosureCategory( Category of matrices over Q ) gap> z := ZeroObject( ZQmat ); <A zero object in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> Sublist( z, [ -1 .. 2 ] ); [ <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0> ] gap> o0 := ZQmat[0]; <An object in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> Sublist( o0, [ -1 .. 2 ] ); [ <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 1>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0> ] gap> IsZero( o0 ); false gap> o1 := ZQmat[1]; <An object in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> Sublist( o1, [ -1 .. 2 ] ); [ <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 1>, <A vector space object over Q of dimension 0> ] gap> o00 := DirectSum( o0, o0 ); <An object in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> Sublist( o00, [ -1 .. 2 ] ); [ <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 2>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0> ] gap> o0 = TensorUnit( ZQmat ); true gap> TensorProduct( o1, ZQmat[-1] ) = o0; true gap> o11 := TensorProduct( o00, o1 ); <An object in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> Sublist( o11, [ -1 .. 2 ] ); [ <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 0>, <A vector space object over Q of dimension 2>, <A vector space object over Q of dimension 0> ] gap> IsZero( TensorProduct( z, o11 ) ); true gap> lu := LeftUnitor( o00 ); <A morphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> IsIsomorphism( lu ); true gap> lu; <An isomorphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> slu := Sublist( lu, [ -1 .. 2 ] );; gap> List( slu, IsIsomorphism ); [ true, true, true, true ] gap> List( slu, IsZero ); [ true, false, true, true ] gap> slu; [ <A zero, isomorphism in Category of matrices over Q>, <An isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q> ] gap> Display( lu[0] ); [ [ 1, 0 ], [ 0, 1 ] ] An isomorphism in Category of matrices over Q gap> ru := RightUnitor( o00 ); <A morphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> IsIsomorphism( ru ); true gap> ru; <An isomorphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> sru := Sublist( ru, [ -1 .. 2 ] );; gap> List( sru, IsIsomorphism ); [ true, true, true, true ] gap> List( sru, IsZero ); [ true, false, true, true ] gap> sru; [ <A zero, isomorphism in Category of matrices over Q>, <An isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q> ] gap> Display( ru[0] ); [ [ 1, 0 ], [ 0, 1 ] ] An isomorphism in Category of matrices over Q gap> lr := AssociatorLeftToRight( o0, o1, o00 ); <A morphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> IsIsomorphism( lr ); true gap> lr; <An isomorphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> slr := Sublist( lr, [ -1 .. 2 ] );; gap> List( slr, IsIsomorphism ); [ true, true, true, true ] gap> List( slr, IsZero ); [ true, true, false, true ] gap> slr; [ <A zero, isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q>, <An isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q> ] gap> Display( lr[1] ); [ [ 1, 0 ], [ 0, 1 ] ] An isomorphism in Category of matrices over Q gap> rl := AssociatorRightToLeft( o0, o1, o00 ); <A morphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> IsIsomorphism( rl ); true gap> rl; <An isomorphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> srl := Sublist( rl, [ -1 .. 2 ] );; gap> List( srl, IsIsomorphism ); [ true, true, true, true ] gap> List( srl, IsZero ); [ true, true, false, true ] gap> srl; [ <A zero, isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q>, <An isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q> ] gap> Display( rl[1] ); [ [ 1, 0 ], [ 0, 1 ] ] An isomorphism in Category of matrices over Q gap> b := Braiding( o11, o00 ); <A morphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> IsIsomorphism( b ); true gap> b; <An isomorphism in FinitelyZGradedClosureCategory( Category of matrices over Q )> gap> sb := Sublist( b, [ -1 .. 2 ] );; gap> List( sb, IsIsomorphism ); [ true, true, true, true ] gap> List( sb, IsZero ); [ true, true, false, true ] gap> sb; [ <A zero, isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q>, <An isomorphism in Category of matrices over Q>, <A zero, isomorphism in Category of matrices over Q> ] gap> Display( b[1] ); [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ] ] An isomorphism in Category of matrices over Q
‣ IsFinitelyZGradedClosureCategory ( object ) | ( filter ) |
Returns: true
or false
The GAP category of finitely Z-graded categories.
‣ IsCellInFinitelyZGradedClosureCategory ( object ) | ( filter ) |
Returns: true
or false
The GAP category of cells in a finitely Z-graded category.
‣ IsObjectInFinitelyZGradedClosureCategory ( object ) | ( filter ) |
Returns: true
or false
The GAP category of objects in a finitely Z-graded category.
‣ IsMorphismInFinitelyZGradedClosureCategory ( morphism ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in a finitely Z-graded category.
generated by GAPDoc2HTML