Goto Chapter: Top 1 2 3 4 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 The finitely Z-graded closure of a category
 4.1 Constructors
 4.2 GAP Categories

4 The finitely Z-graded closure of a category

4.1 Constructors

4.1-1 FinitelyZGradedClosureCategory
‣ FinitelyZGradedClosureCategory( C )( attribute )

Returns: a CAP category

Construct the negatively Z-graded closure of the category C.

gap> LoadPackage( "GradedCategories" );
true
gap> LoadPackage( "LinearAlgebraForCAP" );
true
gap> Q := HomalgFieldOfRationals( );
Q
gap> Qmat := MatrixCategory( Q );
Category of matrices over Q
gap> ZQmat := FinitelyZGradedClosureCategory( Qmat );
FinitelyZGradedClosureCategory( Category of matrices over Q )
gap> z := ZeroObject( ZQmat );
<A zero object in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> Sublist( z, [ -1 .. 2 ] );
[ <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0> ]
gap> o0 := ZQmat[0];
<An object in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> Sublist( o0, [ -1 .. 2 ] );
[ <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 1>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0> ]
gap> IsZero( o0 );
false
gap> o1 := ZQmat[1];
<An object in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> Sublist( o1, [ -1 .. 2 ] );
[ <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 1>,
  <A vector space object over Q of dimension 0> ]
gap> o00 := DirectSum( o0, o0 );
<An object in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> Sublist( o00, [ -1 .. 2 ] );
[ <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 2>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0> ]
gap> o0 = TensorUnit( ZQmat );
true
gap> TensorProduct( o1, ZQmat[-1] ) = o0;
true
gap> o11 := TensorProduct( o00, o1 );
<An object in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> Sublist( o11, [ -1 .. 2 ] );
[ <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 0>,
  <A vector space object over Q of dimension 2>,
  <A vector space object over Q of dimension 0> ]
gap> IsZero( TensorProduct( z, o11 ) );
true
gap> lu := LeftUnitor( o00 );
<A morphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> IsIsomorphism( lu );
true
gap> lu;
<An isomorphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> slu := Sublist( lu, [ -1 .. 2 ] );;
gap> List( slu, IsIsomorphism );
[ true, true, true, true ]
gap> List( slu, IsZero );
[ true, false, true, true ]
gap> slu;
[ <A zero, isomorphism in Category of matrices over Q>,
  <An isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q> ]
gap> Display( lu[0] );
[ [  1,  0 ],
  [  0,  1 ] ]

An isomorphism in Category of matrices over Q
gap> ru := RightUnitor( o00 );
<A morphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> IsIsomorphism( ru );
true
gap> ru;
<An isomorphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> sru := Sublist( ru, [ -1 .. 2 ] );;
gap> List( sru, IsIsomorphism );
[ true, true, true, true ]
gap> List( sru, IsZero );
[ true, false, true, true ]
gap> sru;
[ <A zero, isomorphism in Category of matrices over Q>,
  <An isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q> ]
gap> Display( ru[0] );
[ [  1,  0 ],
  [  0,  1 ] ]

An isomorphism in Category of matrices over Q
gap> lr := AssociatorLeftToRight( o0, o1, o00 );
<A morphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> IsIsomorphism( lr );
true
gap> lr;
<An isomorphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> slr := Sublist( lr, [ -1 .. 2 ] );;
gap> List( slr, IsIsomorphism );
[ true, true, true, true ]
gap> List( slr, IsZero );
[ true, true, false, true ]
gap> slr;
[ <A zero, isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q>,
  <An isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q> ]
gap> Display( lr[1] );
[ [  1,  0 ],
  [  0,  1 ] ]

An isomorphism in Category of matrices over Q
gap> rl := AssociatorRightToLeft( o0, o1, o00 );
<A morphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> IsIsomorphism( rl );
true
gap> rl;
<An isomorphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> srl := Sublist( rl, [ -1 .. 2 ] );;
gap> List( srl, IsIsomorphism );
[ true, true, true, true ]
gap> List( srl, IsZero );
[ true, true, false, true ]
gap> srl;
[ <A zero, isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q>,
  <An isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q> ]
gap> Display( rl[1] );
[ [  1,  0 ],
  [  0,  1 ] ]

An isomorphism in Category of matrices over Q
gap> b := Braiding( o11, o00 );
<A morphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> IsIsomorphism( b );
true
gap> b;
<An isomorphism in
 FinitelyZGradedClosureCategory( Category of matrices over Q )>
gap> sb := Sublist( b, [ -1 .. 2 ] );;
gap> List( sb, IsIsomorphism );
[ true, true, true, true ]
gap> List( sb, IsZero );
[ true, true, false, true ]
gap> sb;
[ <A zero, isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q>,
  <An isomorphism in Category of matrices over Q>,
  <A zero, isomorphism in Category of matrices over Q> ]
gap> Display( b[1] );
[ [  1,  0,  0,  0 ],
  [  0,  0,  1,  0 ],
  [  0,  1,  0,  0 ],
  [  0,  0,  0,  1 ] ]

An isomorphism in Category of matrices over Q

4.2 GAP Categories

4.2-1 IsFinitelyZGradedClosureCategory
‣ IsFinitelyZGradedClosureCategory( object )( filter )

Returns: true or false

The GAP category of finitely Z-graded categories.

4.2-2 IsCellInFinitelyZGradedClosureCategory
‣ IsCellInFinitelyZGradedClosureCategory( object )( filter )

Returns: true or false

The GAP category of cells in a finitely Z-graded category.

4.2-3 IsObjectInFinitelyZGradedClosureCategory
‣ IsObjectInFinitelyZGradedClosureCategory( object )( filter )

Returns: true or false

The GAP category of objects in a finitely Z-graded category.

4.2-4 IsMorphismInFinitelyZGradedClosureCategory
‣ IsMorphismInFinitelyZGradedClosureCategory( morphism )( filter )

Returns: true or false

The GAP category of morphisms in a finitely Z-graded category.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Ind

generated by GAPDoc2HTML