Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

7 The elementary topos of finite reflexive quivers
 7.1 Constructors
 7.2 Attributes
 7.3 Operations
 7.4 Global variables
 7.5 GAP Categories
 7.6 Example

7 The elementary topos of finite reflexive quivers

7.1 Constructors

7.1-1 CategoryOfReflexiveQuiversEnrichedOver
‣ CategoryOfReflexiveQuiversEnrichedOver( V )( attribute )

Returns: a CAP category

Construct the category of reflexive quivers enriched over the category V.

7.1-2 CreateReflexiveQuiver
‣ CreateReflexiveQuiver( arg1, arg2, arg3, arg4 )( operation )

7.1-3 CreateReflexiveQuiver
‣ CreateReflexiveQuiver( arg1, arg2, arg3 )( operation )

7.1-4 CreateReflexiveQuiverMorphism
‣ CreateReflexiveQuiverMorphism( arg1, arg2, arg3, arg4 )( operation )

7.1-5 Subobject
‣ Subobject( arg1, arg2, arg3 )( operation )

7.1-6 Subobject
‣ Subobject( arg1, arg2 )( operation )

7.2 Attributes

7.2-1 UnderlyingCategory
‣ UnderlyingCategory( fin_reflexive_quivers )( attribute )

7.2-2 EmbeddingOfUnderlyingCategory
‣ EmbeddingOfUnderlyingCategory( fin_reflexive_quivers )( attribute )

7.2-3 Loops
‣ Loops( quiver )( attribute )

7.2-4 Arrows
‣ Arrows( quiver )( attribute )

7.2-5 SvgString
‣ SvgString( cell )( attribute )

7.2-6 DotVertexLabelledDigraph
‣ DotVertexLabelledDigraph( cell )( operation )

7.3 Operations

7.4 Global variables

The quiver generating the category of reflexive quivers

7.4-1 QuiverOfCategoryOfReflexiveQuivers
‣ QuiverOfCategoryOfReflexiveQuivers( global variable )

The category of reflexive quivers as a category of presheaves with values in SkeletalFinSets.

7.4-2 FinReflexiveQuivers
‣ FinReflexiveQuivers( global variable )

7.5 GAP Categories

7.5-1 IsCategoryOfReflexiveQuivers
‣ IsCategoryOfReflexiveQuivers( category )( filter )

Returns: true or false

The GAP category of the category of reflexive quivers.

7.5-2 IsCellInCategoryOfReflexiveQuivers
‣ IsCellInCategoryOfReflexiveQuivers( cell )( filter )

Returns: true or false

The GAP category of cells in the category of reflexive quivers.

7.5-3 IsObjectInCategoryOfReflexiveQuivers
‣ IsObjectInCategoryOfReflexiveQuivers( obj )( filter )

Returns: true or false

The GAP category of objects in the category of reflexive quivers.

7.5-4 IsMorphismInCategoryOfReflexiveQuivers
‣ IsMorphismInCategoryOfReflexiveQuivers( mor )( filter )

Returns: true or false

The GAP category of morphisms in the category of reflexive quivers.

7.6 Example

In the following we construct the category of finite reflexive quivers:

gap> LoadPackage( "FunctorCategories" );
true
gap> FinReflexiveQuivers;
FinReflexiveQuivers
gap> V := FinReflexiveQuivers.V;
<A projective object in FinReflexiveQuivers>
gap> Display( V );
( { 0 }, { 0 := [ 0 ] } )
gap> A := FinReflexiveQuivers.A;
<A projective object in FinReflexiveQuivers>
gap> Display( A );
( { 0, 1 }, { 0 := [ 0, 1 ], 1 := [ 0 ], 2 := [ 1 ] } )
gap> T := TerminalObject( FinReflexiveQuivers );
<An object in FinReflexiveQuivers>
gap> Display( T );
( { 0 }, { 0 := [ 0 ] } )
gap> T = V;
true
gap> G := CreateReflexiveQuiver( 2,
>              [ 1, 4 ],
>              [ 0,1, 0,0, 0,0, 1,0, 1,1 ] );
<An object in FinReflexiveQuivers>
gap> IsWellDefined( G );
true
gap> Display( G );
( { 0, 1 },
  { 0 := [ 0, 1 ], 1 := [ 0 ], 2 := [ 0, 0 ], 3 := [ 1, 0 ], 4 := [ 1 ] } )
gap> global_G := HomStructure( T, G );
|2|
gap> Display( global_G );
{ 0, 1 }
gap> DirectProduct( G, V ) = G;
true
gap> iso := CartesianLeftEvaluationMorphism( T, G );
<A morphism in FinReflexiveQuivers>
gap> IsIsomorphism( iso );
true
gap> Display( iso );
Image of <(C0)>:
{ 0, 1 } ⱶ[ 0, 1 ]→ { 0, 1 }

Image of <(C1)>:
{ 0,..., 4 } ⱶ[ 1, 2, 3, 0, 4 ]→ { 0,..., 4 }

A morphism in FinReflexiveQuivers
given by the above data
gap> s := FinReflexiveQuivers.s;
<A split monomorphism in
 FinReflexiveQuivers>
gap> Display( s );
Image of <(C0)>:
{ 0 } ⱶ[ 0 ]→ { 0, 1 }

Image of <(C1)>:
{ 0 } ⱶ[ 1 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
gap> t := FinReflexiveQuivers.t;
<A split monomorphism in
 FinReflexiveQuivers>
gap> Display( t );
Image of <(C0)>:
{ 0 } ⱶ[ 1 ]→ { 0, 1 }

Image of <(C1)>:
{ 0 } ⱶ[ 2 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
gap> l := FinReflexiveQuivers.l;
<A split epimorphism in
 FinReflexiveQuivers>
gap> Display( l );
Image of <(C0)>:
{ 0, 1 } ⱶ[ 0, 0 ]→ { 0 }

Image of <(C1)>:
{ 0, 1, 2 } ⱶ[ 0, 0, 0 ]→ { 0 }

A morphism in FinReflexiveQuivers
given by the above data
gap> omega := SubobjectClassifier( FinReflexiveQuivers );
<An object in FinReflexiveQuivers>
gap> Display( omega );
( { 0, 1 },
  { 0 := [ 0 ], 1 := [ 1, 0 ], 2 := [ 0, 1 ],
    3 := [ 1, 1 ], 4 := [ 1 ] } )
gap> HomStructure( A, omega );
|5|
gap> subsA := ListOfSubobjects( A );
[ <A monomorphism in FinReflexiveQuivers>,
  <A monomorphism in FinReflexiveQuivers>,
  <A monomorphism in FinReflexiveQuivers>,
  <A monomorphism in FinReflexiveQuivers>,
  <A monomorphism in FinReflexiveQuivers> ]
gap> Perform( subsA, Display );
Image of <(C0)>:
∅ ⱶ[  ]→ { 0, 1 }

Image of <(C1)>:
∅ ⱶ[  ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
Image of <(C0)>:
{ 0 } ⱶ[ 0 ]→ { 0, 1 }

Image of <(C1)>:
{ 0 } ⱶ[ 1 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
Image of <(C0)>:
{ 0 } ⱶ[ 1 ]→ { 0, 1 }

Image of <(C1)>:
{ 0 } ⱶ[ 2 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
Image of <(C0)>:
{ 0, 1 } ⱶ[ 0, 1 ]→ { 0, 1 }

Image of <(C1)>:
{ 0, 1 } ⱶ[ 1, 2 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
Image of <(C0)>:
{ 0, 1 } ⱶ[ 0, 1 ]→ { 0, 1 }

Image of <(C1)>:
{ 0, 1, 2 } ⱶ[ 0, 1, 2 ]→ { 0, 1, 2 }

A morphism in FinReflexiveQuivers
given by the above data
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ind

generated by GAPDoc2HTML