Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

6 The category of colimit quivers in a category
 6.1 Attributes
 6.2 Constructors
 6.3 GAP categories

6 The category of colimit quivers in a category

6.1 Attributes

6.1-1 UnderlyingCategory
‣ UnderlyingCategory( ColimitQuivers )( attribute )

Return the category \(C\) underlying the category of colimit quivers ColimitQuivers := CategoryOfColimitQuivers( \(C\) ).

6.1-2 EmbeddingOfUnderlyingCategory
‣ EmbeddingOfUnderlyingCategory( ColimitQuivers )( attribute )

Returns: a CAP functor

The full embedding functor from the category \(C\) underlying the category of colimit quivers ColimitQuivers into ColimitQuivers.

6.1-3 DefiningPairOfColimitQuiver
‣ DefiningPairOfColimitQuiver( colimit_quiver )( attribute )

6.1-4 DefiningPairOfColimitQuiverMorphism
‣ DefiningPairOfColimitQuiverMorphism( colimit_quiver_morphism )( attribute )

6.1-5 FiniteColimitCompletionWithStrictCoproductsOfUnderlyingCategory
‣ FiniteColimitCompletionWithStrictCoproductsOfUnderlyingCategory( PSh )( attribute )

Returns: a CAP category

Given the presheaf category PSh=PreSheaves( \(C\), \(V\) ), return the ambient category CoequalizerCompletion( AssociatedFiniteStrictCoproductCompletionOfSourceCategory( PSh ) ).

6.2 Constructors

6.2-1 CategoryOfColimitQuivers
‣ CategoryOfColimitQuivers( C )( attribute )

Returns: a CAP category

Construct the category colimit quivers in the category C.

gap> LoadPackage( "FunctorCategories", ">= 2024.09-09", false );
true
gap> FinBouquets;
FinBouquets
gap> Chat := ModelingCategory( FinBouquets );
FiniteCocompletion( PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )
gap> ColimitQuiversC := CategoryOfColimitQuivers(
>                  UnderlyingCategory( FinBouquets ) );
CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )
gap> P := ColimitQuiversC.P;
<A projective object in CategoryOfColimitQuivers(
 PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )>
gap> Display( P );
[ [ <(P)> ], [  ] ]

An object in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data
gap> L := ColimitQuiversC.L;
<A projective object in CategoryOfColimitQuivers(
 PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )>
gap> Display( L );
[ [ <(L)> ], [  ] ]

An object in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data
gap> b := ColimitQuiversC.b;
<A morphism in CategoryOfColimitQuivers(
 PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )>
gap> Display( b );
Source: [ [ <(P)> ], [  ] ]

An object in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

Datum:  [ [ [ 0 ], [ (P)-[(b)]->(L) ] ], [  ] ]

Range:  [ [ <(L)> ], [  ] ]

An object in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

A morphism in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data
gap> F := CreateBouquet( 3, [ 0, 0, 0, 2 ] );
<An object in FinBouquets>
gap> Display( F );
( { 0, 1, 2 }, { 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 2 } )
gap> F_as_presheaf := ModelingObject( Chat, ModelingObject( FinBouquets, F ) );
<An object in PreSheaves( PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ),
 SkeletalFinSets )>
gap> Display( F_as_presheaf );
Image of <(P)>:
{ 0, 1, 2 }

Image of <(L)>:
{ 0,..., 3 }

Image of (P)-[(b)]->(L):
{ 0,..., 3 } ⱶ[ 0, 0, 0, 2 ]→ { 0, 1, 2 }

An object in PreSheaves( PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ),
SkeletalFinSets ) given by the above data
gap> F_as_coequalizer_object := CoYonedaLemmaOnObjects( F_as_presheaf );
<An object in FiniteColimitCompletionWithStrictCoproducts(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )>
gap> ColimitCompletionC := CapCategory( F_as_coequalizer_object );
FiniteColimitCompletionWithStrictCoproducts(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )
gap> Display( ColimitCompletionC );
A CAP category with name
FiniteColimitCompletionWithStrictCoproducts(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ):

18 primitive operations were used to derive 63 operations for this category
which algorithmically
* IsCocartesianCategory
and not yet algorithmically
* IsFiniteCocompleteCategory
gap> Display( F_as_coequalizer_object );
Image of <(V)>:
[ 7, [ <(P)>, <(P)>, <(P)>, <(L)>, <(L)>, <(L)>, <(L)> ] ]

An object in FiniteStrictCoproductCompletion( PathCategory(
FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

Image of <(A)>:
[ 4, [ <(P)>, <(P)>, <(P)>, <(P)> ] ]

An object in FiniteStrictCoproductCompletion( PathCategory(
FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

Image of (V)-[(s)]->(A):
{ 0,..., 3 } ⱶ[ 0, 0, 0, 2 ]→ { 0,..., 6 }

[ (P)-[(P)]->(P), (P)-[(P)]->(P), (P)-[(P)]->(P), (P)-[(P)]->(P) ]

A morphism in FiniteStrictCoproductCompletion( PathCategory(
FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

Image of (V)-[(t)]->(A):
{ 0,..., 3 } ⱶ[ 3, 4, 5, 6 ]→ { 0,..., 6 }

[ (P)-[(b)]->(L), (P)-[(b)]->(L), (P)-[(b)]->(L), (P)-[(b)]->(L) ]

A morphism in FiniteStrictCoproductCompletion( PathCategory(
FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data

An object in PreSheaves( PathCategory( FinQuiver( "q(V,A)[s:V-≻A,t:V-≻A]" ) ),
FiniteStrictCoproductCompletion(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) ) given by the above data

An object in FiniteColimitCompletionWithStrictCoproducts(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data
gap> F_as_presheaf =
>   Coequalizer( AssociatedCoequalizerPairInPreSheaves( F_as_coequalizer_object )[2] );
true
gap> F_as_colimit_quiver := AssociatedColimitQuiver( F_as_coequalizer_object );
<An object in CategoryOfColimitQuivers(
 PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) )>
gap> Display( F_as_colimit_quiver );
[ [ <(P)>, <(P)>, <(P)>, <(L)>, <(L)>, <(L)>, <(L)> ],
  [ [ 0, (P)-[(b)]->(L), 3 ], [ 0, (P)-[(b)]->(L), 4 ],
    [ 0, (P)-[(b)]->(L), 5 ], [ 2, (P)-[(b)]->(L), 6 ] ] ]

An object in CategoryOfColimitQuivers(
PathCategory( FinQuiver( "q(P,L)[b:P-≻L]" ) ) ) given by the above data
gap> F_as_presheaf =
>   Coequalizer( AssociatedCoequalizerPairInPreSheaves( F_as_colimit_quiver )[2] );
true

6.2-2 CreateColimitQuiver
‣ CreateColimitQuiver( ColimitQuivers, list )( operation )

Returns: a colimit quiver

6.2-3 CreateMorphismOfColimitQuivers
‣ CreateMorphismOfColimitQuivers( source, list_of_images, target )( operation )

Returns: a colimit quiver morphism

6.2-4 CategoryOfPreSheavesOfUnderlyingCategory
‣ CategoryOfPreSheavesOfUnderlyingCategory( ColimitQuiversC )( attribute )

Returns: a CAP category

Given the category ColimitQuiversC=CategoryOfColimitQuivers( \(C\) ) of colimit quivers in a \(V\)-enriched category \(C\), return the associated category PreSheaves( \(C\), \(V\) ) of presheaves.

6.3 GAP categories

6.3-1 IsCategoryOfColimitQuivers
‣ IsCategoryOfColimitQuivers( category )( filter )

Returns: true or false

The GAP category of categories of colimit quivers in a category.

6.3-2 IsCellInCategoryOfColimitQuivers
‣ IsCellInCategoryOfColimitQuivers( cell )( filter )

Returns: true or false

The GAP category of cells in the category of colimit quivers in a category.

6.3-3 IsObjectInCategoryOfColimitQuivers
‣ IsObjectInCategoryOfColimitQuivers( obj )( filter )

Returns: true or false

The GAP category of objects in the category of colimit quivers in a category.

6.3-4 IsMorphismInCategoryOfColimitQuivers
‣ IsMorphismInCategoryOfColimitQuivers( mor )( filter )

Returns: true or false

The GAP category of morphisms in the category of colimit quivers in a category.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind

generated by GAPDoc2HTML