‣ EmbeddingOfUnderlyingCategory ( FC ) | ( attribute ) |
Returns: a CAP functor
The full embedding functor from the additive category \(C\) underlying the Freyd (=cokernel closure) category FC into FC.
gap> LoadPackage( "FiniteCocompletions" ); true gap> q := FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR->SG,rhoT:TR->TG,phi:SG->TG,chi:SR->TR]" ); FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) gap> P := PathCategory( q ); PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) gap> C := P / [ [ P.rhoS * P.phi, P.chi * P.rhoT ] ]; PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] gap> zz := HomalgRingOfIntegers( ); Z gap> L := LinearClosure( zz, C ); Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) gap> A := AdditiveClosure( L ); AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) gap> K := CoFreydCategory( A ); CoFreyd( AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) ) gap> F := FreydCategory( K ); Freyd( CoFreyd( AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) ) ) gap> S := CokernelObject( F.rhoS ); <An object in Freyd( CoFreyd( AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) ) )> gap> T := CokernelObject( F.rhoT ); <An object in Freyd( CoFreyd( AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) ) )> gap> psi := MorphismConstructor( S, K.phi, T ); <A morphism in Freyd( CoFreyd( AdditiveClosure( Z-LinearClosure( PathCategory( FinQuiver( "Q(SG,SR,TG,TR)[rhoS:SR-≻SG,rhoT:TR-≻TG,phi:SG-≻TG,chi:SR-≻TR]" ) ) / [ rhoS⋅phi = chi⋅rhoT ] ) ) ) )> gap> IsWellDefined( psi ); true gap> CokernelObjectFunctorial( F.rhoS, F.phi, F.rhoT ) = psi; true gap> psi = > EvalString( CellAsEvaluatableString( psi, [ "F", "K", "A", "L", "C", "P" ] ) ); true
‣ ExtendFunctorToFreydCategory ( AC ) | ( attribute ) |
Returns: a CAP functor
The full embedding functor from the additive category \(C\) underlying the cokernel closure category FC into FC.
generated by GAPDoc2HTML