Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

13 Tools
 13.1 Operations

13 Tools

13.1 Operations

13.1-1 TensorizeObjectWithObjectInRangeCategoryOfHomomorphismStructure
‣ TensorizeObjectWithObjectInRangeCategoryOfHomomorphismStructure( objC, objH )( operation )

Returns: a CAP object

The arguments are an ojbect objC in a category C and an object objH in H := RangeCategoryOfHomomorphismStructure( C ). The output is an object in EnrichmentSpecificFiniteStrictCoproductCompletion( C ), namely the tensor product objC \otimes objH, i.e., the formal coproduct of l copies of objC, where l := ObjectDatum( objH ) is a nonnegative integer.

13.1-2 TensorizeObjectWithMorphismInRangeCategoryOfHomomorphismStructure
‣ TensorizeObjectWithMorphismInRangeCategoryOfHomomorphismStructure( objC, morH )( operation )

Returns: a CAP morphism

The arguments are an ojbect objC in a cocartesian category C and a morphism morH in H := RangeCategoryOfHomomorphismStructure( C ). The output is a morphism in EnrichmentSpecificFiniteStrictCoproductCompletion( C ), namely the tensor product objC \otimes morH, i.e., the morphism induced by morH from the formal coproduct of t copies of objC to the formal coproduct of t copies of objC, where s := ObjectDatum( Source( morH ) ) and t := ObjectDatum( Range( morH ) ).

13.1-3 TensorizeMorphismWithObjectInRangeCategoryOfHomomorphismStructure
‣ TensorizeMorphismWithObjectInRangeCategoryOfHomomorphismStructure( morC, objH )( operation )

Returns: a CAP morphism

The arguments are a morphism morC in a cocartesian category C and an object objH in H := RangeCategoryOfHomomorphismStructure( C ). The output is a morphism in EnrichmentSpecificFiniteStrictCoproductCompletion( C ), namely the tensor product morC \otimes objH, i.e., the morphism induced by morC of the formal coproduct of l copies of Source( morC ) to the formal coproduct of l copies of Range( morC ), where l := ObjectDatum( objH ).

gap> LoadPackage( "FunctorCategories", ">= 2023.11-07", false );
true
gap> q := RightQuiver( "q(o)[x:o->o]" );
q(o)[x:o->o]
gap> F := FreeCategory( q );
FreeCategory( RightQuiver( "q(o)[x:o->o]" ) )
gap> Q := HomalgFieldOfRationals( );
Q
gap> QF := Q[F];
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) )
gap> A := QF / [ QF.xxx ];
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations
gap> o := A.o;
<(o)>
gap> x := A.x;
(o)-[{ 1*(x) }]->(o)
gap> Qmat := RangeCategoryOfHomomorphismStructure( A );
Rows( Q )
gap> U := 3 / Qmat;
<A row module over Q of rank 3>
gap> phi := HomalgMatrix( [ 0,1,0, 0,0,1, 0,0,0 ], 3, 3, Q ) / Qmat;
<A morphism in Rows( Q )>
gap> Display( phi );
Source:
A row module over Q of rank 3

Matrix:
[ [  0,  1,  0 ],
  [  0,  0,  1 ],
  [  0,  0,  0 ] ]

Range:
A row module over Q of rank 3

A morphism in Rows( Q )
gap> PSh := PreSheaves( A );
PreSheaves( Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) )
/ relations, Rows( Q ) )
gap> Mphi := CreatePreSheafByValues( PSh, Pair( [ U ], [ phi ] ) );
<(o)->3; (x)->3x3>
gap> IsWellDefined( Mphi );
true
gap> Display( Mphi );
Image of <(o)>:
A row module over Q of rank 3

Image of (o)-[{ 1*(x) }]->(o):
Source:
A row module over Q of rank 3

Matrix:
[ [  0,  1,  0 ],
  [  0,  0,  1 ],
  [  0,  0,  0 ] ]

Range:
A row module over Q of rank 3

A morphism in Rows( Q )

An object in PreSheaves(
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations,
Rows( Q ) ) given by the above data
gap> Mphi_as_coequqlizer_pair := CoYonedaLemmaOnObjects( Mphi );
<An object in FiniteColimitCompletionWithStrictCoproducts(
 Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations )>
gap> Display( Mphi_as_coequqlizer_pair );
Image of <(V)>:
A formal direct sum consisting of 3 objects.
<(o)>
<(o)>
<(o)>

Image of <(A)>:
A formal direct sum consisting of 3 objects.
<(o)>
<(o)>
<(o)>

Image of (V)-[(s)]->(A):
A 3 x 3 matrix with entries in
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations

[1,1]: (o)-[{ 0 }]->(o)
[1,2]: (o)-[{ 1*(o) }]->(o)
[1,3]: (o)-[{ 0 }]->(o)
[2,1]: (o)-[{ 0 }]->(o)
[2,2]: (o)-[{ 0 }]->(o)
[2,3]: (o)-[{ 1*(o) }]->(o)
[3,1]: (o)-[{ 0 }]->(o)
[3,2]: (o)-[{ 0 }]->(o)
[3,3]: (o)-[{ 0 }]->(o)
Image of (V)-[(t)]->(A):
A 3 x 3 matrix with entries in
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations

[1,1]: (o)-[{ 1*(x) }]->(o)
[1,2]: (o)-[{ 0 }]->(o)
[1,3]: (o)-[{ 0 }]->(o)
[2,1]: (o)-[{ 0 }]->(o)
[2,2]: (o)-[{ 1*(x) }]->(o)
[2,3]: (o)-[{ 0 }]->(o)
[3,1]: (o)-[{ 0 }]->(o)
[3,2]: (o)-[{ 0 }]->(o)
[3,3]: (o)-[{ 1*(x) }]->(o)
An object in PreSheaves( FreeCategory( RightQuiver( "q(V,A)[s:V->A,t:V->A]" ) ),
AdditiveClosure( Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) /
relations ) ) given by the above data

An object in FiniteColimitCompletionWithStrictCoproducts(
Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations )
given by the above data
gap> phi_in_additive_closure :=
>   TensorizeObjectWithMorphismInRangeCategoryOfHomomorphismStructure( o, phi );
<A morphism in AdditiveClosure(
 Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations )
 defined by a 3 x 3 matrix of underlying morphisms>
gap> x_in_additive_closure :=
>   TensorizeMorphismWithObjectInRangeCategoryOfHomomorphismStructure( x, U );
<A morphism in AdditiveClosure(
 Algebra( Q, FreeCategory( RightQuiver( "q(o)[x:o->o]" ) ) ) / relations )
 defined by a 3 x 3 matrix of underlying morphisms>
gap> Mphi_as_coequqlizer_pair.s = phi_in_additive_closure;
true
gap> Mphi_as_coequqlizer_pair.t = x_in_additive_closure;
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ind

generated by GAPDoc2HTML