gap> G := SymmetricGroup( 3 );; gap> CG := GroupAsCategory( G );; gap> u := GroupAsCategoryUniqueObject( CG );; gap> SetOfObjects( CG ) = [ u ]; true gap> SetOfGeneratingMorphisms( CG ); [ <(1,2,3)>, <(1,2)> ] gap> Length( SetOfMorphismsOfFiniteCategory( CG ) ) = Size( G ); true gap> x := (2,3) / CG;; gap> id := () / CG;; gap> x * x = id; true gap> IsIdenticalObj( x * x, id ); false gap> alpha := GroupAsCategoryMorphism( CG, (1,2,3) );; gap> alpha * Inverse( alpha ) = IdentityMorphism( u ); true gap> beta := GroupAsCategoryMorphism( CG, (1,2,3,5) );; gap> IsWellDefined( beta ); false gap> gamma := GroupAsCategoryMorphism( CG, (1,3) );; gap> IsWellDefined( gamma ); true gap> Lift( alpha, gamma ) * gamma = alpha; true gap> alpha * Colift( alpha, gamma ) = gamma; true #@if IsPackageMarkedForLoading( "FinSetsForCAP", ">= 2023.07-03" ) gap> Length( HomomorphismStructureOnObjects( u, u ) ) = Size( G ); true gap> InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( > u,u, > PreCompose( > InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( alpha ), > HomomorphismStructureOnMorphisms( gamma, Inverse( gamma ) ) ) ) > = > gamma * alpha * Inverse( gamma ); true #@fi
generated by GAPDoc2HTML