Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Basic operations
 1.1 Weak kernel
 1.2 Weak cokernel
 1.3 Weak bi-fiber product
 1.4 Biased weak fiber product
 1.5 Weak bi-pushout
 1.6 Biased weak pushout
 1.7 Abelian constructions

1 Basic operations

1.1 Weak kernel

For a given morphism \alpha: A \rightarrow B, a weak kernel of \alpha consists of three parts:

The triple ( K, \iota, u ) is called a weak kernel of \alpha. We denote the object K of such a triple by \mathrm{WeakKernelObject}(\alpha). We say that the morphism u(\tau) is induced by the universal property of the weak kernel.

1.1-1 WeakKernelObject
‣ WeakKernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha. The output is the weak kernel K of \alpha.

1.1-2 WeakKernelEmbedding
‣ WeakKernelEmbedding( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(\mathrm{WeakKernelObject}(\alpha),A)

The argument is a morphism \alpha: A \rightarrow B. The output is the weak kernel embedding \iota: \mathrm{WeakKernelObject}(\alpha) \rightarrow A.

1.1-3 WeakKernelEmbeddingWithGivenWeakKernelObject
‣ WeakKernelEmbeddingWithGivenWeakKernelObject( alpha, K )( operation )

Returns: a morphism in \mathrm{Hom}(K,A)

The arguments are a morphism \alpha: A \rightarrow B and an object K = \mathrm{WeakKernelObject}(\alpha). The output is the weak kernel embedding \iota: K \rightarrow A.

1.1-4 WeakKernelLift
‣ WeakKernelLift( alpha, tau )( operation )

Returns: a morphism in \mathrm{Hom}(T,\mathrm{WeakKernelObject}(\alpha))

The arguments are a morphism \alpha: A \rightarrow B and a test morphism \tau: T \rightarrow A satisfying \alpha \circ \tau \sim_{T,B} 0. The output is the morphism u(\tau): T \rightarrow \mathrm{WeakKernelObject}(\alpha) given by the universal property of the weak kernel.

1.1-5 WeakKernelLiftWithGivenWeakKernelObject
‣ WeakKernelLiftWithGivenWeakKernelObject( alpha, tau, K )( operation )

Returns: a morphism in \mathrm{Hom}(T,K)

The arguments are a morphism \alpha: A \rightarrow B, a test morphism \tau: T \rightarrow A satisfying \alpha \circ \tau \sim_{T,B} 0, and an object K = \mathrm{WeakKernelObject}(\alpha). The output is the morphism u(\tau): T \rightarrow K given by the universal property of the weak kernel.

1.2 Weak cokernel

For a given morphism \alpha: A \rightarrow B, a weak cokernel of \alpha consists of three parts:

The triple ( K, \epsilon, u ) is called a weak cokernel of \alpha. We denote the object K of such a triple by \mathrm{WeakCokernelObject}(\alpha). We say that the morphism u(\tau) is induced by the universal property of the weak cokernel.

1.2-1 WeakCokernelObject
‣ WeakCokernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha: A \rightarrow B. The output is the weak cokernel K of \alpha.

1.2-2 WeakCokernelProjection
‣ WeakCokernelProjection( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(B, \mathrm{WeakCokernelObject}( \alpha ))

The argument is a morphism \alpha: A \rightarrow B. The output is the weak cokernel projection \epsilon: B \rightarrow \mathrm{WeakCokernelObject}( \alpha ).

1.2-3 WeakCokernelProjectionWithGivenWeakCokernelObject
‣ WeakCokernelProjectionWithGivenWeakCokernelObject( alpha, K )( operation )

Returns: a morphism in \mathrm{Hom}(B, K)

The arguments are a morphism \alpha: A \rightarrow B and an object K = \mathrm{WeakCokernelObject}(\alpha). The output is the weak cokernel projection \epsilon: B \rightarrow \mathrm{WeakCokernelObject}( \alpha ).

1.2-4 WeakCokernelColift
‣ WeakCokernelColift( alpha, tau )( operation )

Returns: a morphism in \mathrm{Hom}(\mathrm{WeakCokernelObject}(\alpha),T)

The arguments are a morphism \alpha: A \rightarrow B and a test morphism \tau: B \rightarrow T satisfying \tau \circ \alpha \sim_{A, T} 0. The output is the morphism u(\tau): \mathrm{WeakCokernelObject}(\alpha) \rightarrow T given by the universal property of the weak cokernel.

1.2-5 WeakCokernelColiftWithGivenWeakCokernelObject
‣ WeakCokernelColiftWithGivenWeakCokernelObject( alpha, tau, K )( operation )

Returns: a morphism in \mathrm{Hom}(K,T)

The arguments are a morphism \alpha: A \rightarrow B, a test morphism \tau: B \rightarrow T satisfying \tau \circ \alpha \sim_{A, T} 0, and an object K = \mathrm{WeakCokernelObject}(\alpha). The output is the morphism u(\tau): K \rightarrow T given by the universal property of the weak cokernel.

1.3 Weak bi-fiber product

For a given pair of morphisms (\alpha: A \rightarrow B, \beta \colon C \rightarrow B), a weak bi-fiber product of (\alpha, \beta) consists of three parts:

The quadrupel ( P, \pi_1, \pi_2, u ) is called a weak bi-fiber product of (\alpha,\beta). We denote the object P of such a quadrupel by \mathrm{WeakBiFiberProduct}(\alpha,\beta). We say that the morphism u(\tau) is induced by the universal property of the weak bi-fiber product.

1.3-1 WeakBiFiberProduct
‣ WeakBiFiberProduct( alpha, beta )( operation )

Returns: an object

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the weak bi-fiber product P of \alpha and \beta.

1.3-2 ProjectionInFirstFactorOfWeakBiFiberProduct
‣ ProjectionInFirstFactorOfWeakBiFiberProduct( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( P, A )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the first weak bi-fiber product projection \pi_1: P \rightarrow A.

1.3-3 ProjectionInFirstFactorOfWeakBiFiberProductWithGivenWeakBiFiberProduct
‣ ProjectionInFirstFactorOfWeakBiFiberProductWithGivenWeakBiFiberProduct( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( P, A )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B and an object P = \mathrm{WeakBiFiberProduct}( \alpha, \beta ). The output is the first weak bi-fiber product projection \pi_1: P \rightarrow A.

1.3-4 ProjectionInSecondFactorOfWeakBiFiberProduct
‣ ProjectionInSecondFactorOfWeakBiFiberProduct( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( P, C )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the second weak bi-fiber product projection \pi_2: P \rightarrow C.

1.3-5 ProjectionInSecondFactorOfWeakBiFiberProductWithGivenWeakBiFiberProduct
‣ ProjectionInSecondFactorOfWeakBiFiberProductWithGivenWeakBiFiberProduct( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( P, C )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B and an object P = \mathrm{WeakBiFiberProduct}( \alpha, \beta ). The output is the second weak bi-fiber product projection \pi_2: P \rightarrow C.

1.3-6 UniversalMorphismIntoWeakBiFiberProduct
‣ UniversalMorphismIntoWeakBiFiberProduct( alpha, beta, tau_1, tau_2 )( operation )

Returns: a morphism in \mathrm{Hom}( T, P )

The arguments are four morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B, \tau_1: T \rightarrow A, \tau_2: T \rightarrow C. The output is the morphism u( \tau ) induced by the universal property of the weak bi-fiber product P of \alpha and \beta.

1.3-7 UniversalMorphismIntoWeakBiFiberProductWithGivenWeakBiFiberProduct
‣ UniversalMorphismIntoWeakBiFiberProductWithGivenWeakBiFiberProduct( alpha, beta, tau_1, tau_2, P )( operation )

Returns: a morphism in \mathrm{Hom}( T, P )

The arguments are four morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B, \tau_1: T \rightarrow A, \tau_2: T \rightarrow C and an object P = \mathrm{WeakBiFiberProduct}( \alpha, \beta ). The output is the morphism u( \tau ) induced by the universal property of the weak bi-fiber product P.

1.3-8 WeakBiFiberProductMorphismToDirectSum
‣ WeakBiFiberProductMorphismToDirectSum( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( P, A \oplus C )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the morphism P \rightarrow A \oplus C obtained from the two weak bi-fiber product projections \pi_1 and \pi_2 and the universal property of the direct sum.

1.4 Biased weak fiber product

For a given pair of morphisms (\alpha: A \rightarrow B, \beta \colon C \rightarrow B), a biased weak fiber product of (\alpha, \beta) consists of three parts:

The triple ( P, \pi, u ) is called a biased weak fiber product of (\alpha,\beta). We denote the object P of such a triple by \mathrm{BiasedWeakFiberProduct}(\alpha,\beta). We say that the morphism u(\tau) is induced by the universal property of the biased weak fiber product.

1.4-1 BiasedWeakFiberProduct
‣ BiasedWeakFiberProduct( alpha, beta )( operation )

Returns: an object

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the biased weak fiber product P of \alpha and \beta.

1.4-2 ProjectionOfBiasedWeakFiberProduct
‣ ProjectionOfBiasedWeakFiberProduct( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( P, A )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the biased weak fiber product projection \pi: P \rightarrow A.

1.4-3 ProjectionOfBiasedWeakFiberProductWithGivenBiasedWeakFiberProduct
‣ ProjectionOfBiasedWeakFiberProductWithGivenBiasedWeakFiberProduct( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( P, A )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B, and an object P = \mathrm{BiasedWeakFiberProduct}( \alpha, \beta ). The output is the biased weak fiber product projection \pi: P \rightarrow A.

1.4-4 UniversalMorphismIntoBiasedWeakFiberProduct
‣ UniversalMorphismIntoBiasedWeakFiberProduct( alpha, beta, tau )( operation )

Returns: a morphism in \mathrm{Hom}( T, P )

The arguments are three morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B, \tau: T \rightarrow A. The output is the morphism u( \tau ) induced by the universal property of the biased weak fiber product P of \alpha and \beta.

1.4-5 UniversalMorphismIntoBiasedWeakFiberProductWithGivenBiasedWeakFiberProduct
‣ UniversalMorphismIntoBiasedWeakFiberProductWithGivenBiasedWeakFiberProduct( alpha, beta, tau, P )( operation )

Returns: a morphism in \mathrm{Hom}( T, P )

The arguments are three morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B, \tau: T \rightarrow A and an object P = \mathrm{BiasedWeakFiberProduct}( \alpha, \beta ). The output is the morphism u( \tau ) induced by the universal property of the biased weak fiber product P of \alpha and \beta.

1.5 Weak bi-pushout

For a given pair of morphisms (\alpha: A \rightarrow B, \beta \colon A \rightarrow C), a weak bi-pushout of (\alpha, \beta) consists of three parts:

The quadrupel ( P, \iota_1, \iota_2, u ) is called a weak bi-pushout of (\alpha,\beta). We denote the object P of such a quadrupel by \mathrm{WeakBiPushout}(\alpha,\beta). We say that the morphism u(\tau) is induced by the universal property of the weak bi-pushout.

1.5-1 WeakBiPushout
‣ WeakBiPushout( alpha, beta )( operation )

Returns: an object

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C. The output is the weak bi-pushout P of \alpha and \beta.

1.5-2 InjectionOfFirstCofactorOfWeakBiPushout
‣ InjectionOfFirstCofactorOfWeakBiPushout( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( B, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C. The output is the first weak bi-pushout injection \iota_1: B \rightarrow P.

1.5-3 InjectionOfSecondCofactorOfWeakBiPushout
‣ InjectionOfSecondCofactorOfWeakBiPushout( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( C, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C. The output is the second weak bi-pushout injection \iota_2: C \rightarrow P.

1.5-4 InjectionOfFirstCofactorOfWeakBiPushoutWithGivenWeakBiPushout
‣ InjectionOfFirstCofactorOfWeakBiPushoutWithGivenWeakBiPushout( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( B, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C and an object P = \mathrm{WeakBiPushout}( \alpha, \beta ). The output is the first weak bi-pushout injection \iota_1: B \rightarrow P.

1.5-5 InjectionOfSecondCofactorOfWeakBiPushoutWithGivenWeakBiPushout
‣ InjectionOfSecondCofactorOfWeakBiPushoutWithGivenWeakBiPushout( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( C, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C and an object P = \mathrm{WeakBiPushout}( \alpha, \beta ). The output is the second weak bi-pushout injection \iota_2: C \rightarrow P.

1.5-6 UniversalMorphismFromWeakBiPushout
‣ UniversalMorphismFromWeakBiPushout( alpha, beta, tau_1, tau_2 )( operation )

Returns: a morphism in \mathrm{Hom}( P, T )

The arguments are four morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C, \tau_1: B \rightarrow T, \tau_2: C \rightarrow T. The output is the morphism u( \tau ) induced by the universal property of the weak bi-pushout P of \alpha and \beta.

1.5-7 UniversalMorphismFromWeakBiPushoutWithGivenWeakBiPushout
‣ UniversalMorphismFromWeakBiPushoutWithGivenWeakBiPushout( alpha, beta, tau_1, tau_2, P )( operation )

Returns: a morphism in \mathrm{Hom}( P, T )

The arguments are four morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C, \tau_1: B \rightarrow T, \tau_2: C \rightarrow T, and an object P = \mathrm{WeakBiPushout}( \alpha, \beta ). The output is the morphism u( \tau ) induced by the universal property of the weak bi-pushout P of \alpha and \beta.

1.5-8 DirectSumMorphismToWeakBiPushout
‣ DirectSumMorphismToWeakBiPushout( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}(B \oplus C, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: C \rightarrow B. The output is the morphism B \oplus C \rightarrow P obtained from the two weak bi-fiber product injections \iota_1 and \iota_2 and the universal property of the direct sum.

1.6 Biased weak pushout

For a given pair of morphisms (\alpha: A \rightarrow B, \beta: A \rightarrow C), a biased weak pushout of (\alpha, \beta) consists of three parts:

The triple ( P, \iota, u ) is called a biased weak pushout of (\alpha,\beta). We denote the object P of such a triple by \mathrm{BiasedWeakPushout}(\alpha,\beta). We say that the morphism u(\tau) is induced by the universal property of the biased weak pushout.

1.6-1 BiasedWeakPushout
‣ BiasedWeakPushout( alpha, beta )( operation )

Returns: an object

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C. The output is the biased weak pushout P of \alpha and \beta.

1.6-2 InjectionOfBiasedWeakPushout
‣ InjectionOfBiasedWeakPushout( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}( B, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C. The output is the biased weak pushout injection \iota: B \rightarrow P.

1.6-3 InjectionOfBiasedWeakPushoutWithGivenBiasedWeakPushout
‣ InjectionOfBiasedWeakPushoutWithGivenBiasedWeakPushout( alpha, beta, P )( operation )

Returns: a morphism in \mathrm{Hom}( B, P )

The arguments are two morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C and an object P = \mathrm{BiasedWeakPushout}( \alpha, \beta ). The output is the biased weak pushout injection \iota: B \rightarrow P.

1.6-4 UniversalMorphismFromBiasedWeakPushout
‣ UniversalMorphismFromBiasedWeakPushout( alpha, beta, tau )( operation )

Returns: a morphism in \mathrm{Hom}( P, T )

The arguments are three morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C, \tau: B \rightarrow T. The output is the morphism u( \tau ) induced by the universal property of the biased weak pushout P of \alpha and \beta.

1.6-5 UniversalMorphismFromBiasedWeakPushoutWithGivenBiasedWeakPushout
‣ UniversalMorphismFromBiasedWeakPushoutWithGivenBiasedWeakPushout( alpha, beta, tau, P )( operation )

Returns: a morphism in \mathrm{Hom}( P, T )

The arguments are three morphisms \alpha: A \rightarrow B, \beta: A \rightarrow C, \tau: B \rightarrow T and an object P = \mathrm{BiasedWeakPushout}( \alpha, \beta ). The output is the morphism u( \tau ) induced by the universal property of the biased weak pushout P of \alpha and \beta.

1.7 Abelian constructions

1.7-1 SomeProjectiveObjectForKernelObject
‣ SomeProjectiveObjectForKernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha. The output is the source of EpimorphismFromSomeProjectiveObjectForKernelObject applied to \alpha.

1.7-2 EpimorphismFromSomeProjectiveObjectForKernelObject
‣ EpimorphismFromSomeProjectiveObjectForKernelObject( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(P,\mathrm{KernelObject}( \alpha ))

The argument is a morphism \alpha. The output is an epimorphism \pi: P \rightarrow \mathrm{KernelObject}( \alpha ) with P a projective object.

1.7-3 EpimorphismFromSomeProjectiveObjectForKernelObjectWithGivenSomeProjectiveObjectForKernelObject
‣ EpimorphismFromSomeProjectiveObjectForKernelObjectWithGivenSomeProjectiveObjectForKernelObject( alpha )( operation )

Returns: a morphism in \mathrm{Hom}(P,\mathrm{KernelObject}( \alpha ))

The arguments are a morphism \alpha and an object P = \mathrm{SomeProjectiveObjectForKernelObject}( \alpha ). The output is an epimorphism \pi: P \rightarrow \mathrm{KernelObject}( \alpha ).

1.7-4 SomeInjectiveObjectForCokernelObject
‣ SomeInjectiveObjectForCokernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha. The output is the range of MonomorphismToSomeInjectiveObjectForCokernelObject applied to \alpha.

1.7-5 MonomorphismToSomeInjectiveObjectForCokernelObject
‣ MonomorphismToSomeInjectiveObjectForCokernelObject( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), I)

The argument is a morphism \alpha. The output is a monomorphism \iota: \mathrm{CokernelObject}( \alpha ) \rightarrow I with I an injective object.

1.7-6 MonomorphismToSomeInjectiveObjectForCokernelObjectWithGivenSomeInjectiveObjectForCokernelObject
‣ MonomorphismToSomeInjectiveObjectForCokernelObjectWithGivenSomeInjectiveObjectForCokernelObject( alpha )( operation )

Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), I)

The arguments are a morphism \alpha and an object I = \mathrm{SomeInjectiveObjectForCokernelObject}( \alpha ). The output is a monomorphism \iota: \mathrm{CokernelObject}( \alpha ) \rightarrow I.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ind

generated by GAPDoc2HTML