Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

1 Basic operations
 1.1 Abelian constructions

1 Basic operations

1.1 Abelian constructions

1.1-1 SomeProjectiveObjectForKernelObject
‣ SomeProjectiveObjectForKernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha. The output is the source of EpimorphismFromSomeProjectiveObjectForKernelObject applied to \alpha.

1.1-2 EpimorphismFromSomeProjectiveObjectForKernelObject
‣ EpimorphismFromSomeProjectiveObjectForKernelObject( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(P,\mathrm{KernelObject}( \alpha ))

The argument is a morphism \alpha. The output is an epimorphism \pi: P \rightarrow \mathrm{KernelObject}( \alpha ) with P a projective object.

1.1-3 EpimorphismFromSomeProjectiveObjectForKernelObjectWithGivenSomeProjectiveObjectForKernelObject
‣ EpimorphismFromSomeProjectiveObjectForKernelObjectWithGivenSomeProjectiveObjectForKernelObject( alpha )( operation )

Returns: a morphism in \mathrm{Hom}(P,\mathrm{KernelObject}( \alpha ))

The arguments are a morphism \alpha and an object P = \mathrm{SomeProjectiveObjectForKernelObject}( \alpha ). The output is an epimorphism \pi: P \rightarrow \mathrm{KernelObject}( \alpha ).

1.1-4 SomeInjectiveObjectForCokernelObject
‣ SomeInjectiveObjectForCokernelObject( alpha )( attribute )

Returns: an object

The argument is a morphism \alpha. The output is the range of MonomorphismToSomeInjectiveObjectForCokernelObject applied to \alpha.

1.1-5 MonomorphismToSomeInjectiveObjectForCokernelObject
‣ MonomorphismToSomeInjectiveObjectForCokernelObject( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), I)

The argument is a morphism \alpha. The output is a monomorphism \iota: \mathrm{CokernelObject}( \alpha ) \rightarrow I with I an injective object.

1.1-6 MonomorphismToSomeInjectiveObjectForCokernelObjectWithGivenSomeInjectiveObjectForCokernelObject
‣ MonomorphismToSomeInjectiveObjectForCokernelObjectWithGivenSomeInjectiveObjectForCokernelObject( alpha )( operation )

Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), I)

The arguments are a morphism \alpha and an object I = \mathrm{SomeInjectiveObjectForCokernelObject}( \alpha ). The output is a monomorphism \iota: \mathrm{CokernelObject}( \alpha ) \rightarrow I.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ind

generated by GAPDoc2HTML