‣ BasisOfRowModule ( M ) | ( function ) |
Returns: a homalg matrix over the ambient ring
BasisOfRowModule := function( M ) local Mrel; Mrel := StackedRelations( M ); Mrel := HomalgResidueClassMatrix( BasisOfRowModule( Mrel ), HomalgRing( M ) ); return GetRidOfObsoleteRows( Mrel ); end,
‣ BasisOfColumnModule ( M ) | ( function ) |
Returns: a homalg matrix over the ambient ring
BasisOfColumnModule := function( M ) local Mrel; Mrel := AugmentedRelations( M ); Mrel := HomalgResidueClassMatrix( BasisOfColumnModule( Mrel ), HomalgRing( M ) ); return GetRidOfObsoleteColumns( Mrel ); end,
‣ DecideZeroRows ( A, B ) | ( function ) |
Returns: a homalg matrix over the ambient ring
DecideZeroRows := function( A, B ) local Brel; Brel := StackedRelations( B ); Brel := BasisOfRowModule( Brel ); return HomalgResidueClassMatrix( DecideZeroRows( Eval( A ), Brel ), HomalgRing( A ) ); end,
‣ DecideZeroColumns ( A, B ) | ( function ) |
Returns: a homalg matrix over the ambient ring
DecideZeroColumns := function( A, B ) local Brel; Brel := AugmentedRelations( B ); Brel := BasisOfColumnModule( Brel ); return HomalgResidueClassMatrix( DecideZeroColumns( Eval( A ), Brel ), HomalgRing( A ) ); end,
‣ SyzygiesGeneratorsOfRows ( M ) | ( function ) |
Returns: a homalg matrix over the ambient ring
SyzygiesGeneratorsOfRows := function( M ) local R, ring_rel, rel, S; R := HomalgRing( M ); ring_rel := RingRelations( R ); rel := MatrixOfRelations( ring_rel ); if IsHomalgRingRelationsAsGeneratorsOfRightIdeal( ring_rel ) then rel := Involution( rel ); fi; rel := DiagMat( ListWithIdenticalEntries( NumberColumns( M ), rel ) ); S := SyzygiesGeneratorsOfRows( Eval( M ), rel ); S := HomalgResidueClassMatrix( S, R ); S := GetRidOfObsoleteRows( S ); if IsZero( S ) then SetIsLeftRegular( M, true ); fi; return S; end,
‣ SyzygiesGeneratorsOfColumns ( M ) | ( function ) |
Returns: a homalg matrix over the ambient ring
SyzygiesGeneratorsOfColumns := function( M ) local R, ring_rel, rel, S; R := HomalgRing( M ); ring_rel := RingRelations( R ); rel := MatrixOfRelations( ring_rel ); if IsHomalgRingRelationsAsGeneratorsOfLeftIdeal( ring_rel ) then rel := Involution( rel ); fi; rel := DiagMat( ListWithIdenticalEntries( NumberRows( M ), rel ) ); S := SyzygiesGeneratorsOfColumns( Eval( M ), rel ); S := HomalgResidueClassMatrix( S, R ); S := GetRidOfObsoleteColumns( S ); if IsZero( S ) then SetIsRightRegular( M, true ); fi; return S; end,
‣ BasisOfRowsCoeff ( M, T ) | ( function ) |
Returns: a homalg matrix over the ambient ring
BasisOfRowsCoeff := function( M, T ) local Mrel, TT, bas, nz; Mrel := StackedRelations( M ); TT := HomalgVoidMatrix( HomalgRing( Mrel ) ); bas := BasisOfRowsCoeff( Mrel, TT ); bas := HomalgResidueClassMatrix( bas, HomalgRing( M ) ); nz := NonZeroRows( bas ); SetEval( T, CertainRows( CertainColumns( TT, [ 1 .. NumberRows( M ) ] ), nz ) ); ResetFilterObj( T, IsVoidMatrix ); ## the generic BasisOfRowsCoeff will assume that ## ( NumberRows( B ) = 0 ) = IsZero( B ) return CertainRows( bas, nz ); end,
‣ BasisOfColumnsCoeff ( M, T ) | ( function ) |
Returns: a homalg matrix over the ambient ring
BasisOfColumnsCoeff := function( M, T ) local Mrel, TT, bas, nz; Mrel := AugmentedRelations( M ); TT := HomalgVoidMatrix( HomalgRing( Mrel ) ); bas := BasisOfColumnsCoeff( Mrel, TT ); bas := HomalgResidueClassMatrix( bas, HomalgRing( M ) ); nz := NonZeroColumns( bas ); SetEval( T, CertainColumns( CertainRows( TT, [ 1 .. NumberColumns( M ) ] ), nz ) ); ResetFilterObj( T, IsVoidMatrix ); ## the generic BasisOfColumnsCoeff will assume that ## ( NumberColumns( B ) = 0 ) = IsZero( B ) return CertainColumns( bas, nz ); end,
‣ DecideZeroRowsEffectively ( A, B, T ) | ( function ) |
Returns: a homalg matrix over the ambient ring
DecideZeroRowsEffectively := function( A, B, T ) local Brel, TT, red; Brel := StackedRelations( B ); TT := HomalgVoidMatrix( HomalgRing( Brel ) ); red := DecideZeroRowsEffectively( Eval( A ), Brel, TT ); SetEval( T, CertainColumns( TT, [ 1 .. NumberRows( B ) ] ) ); ResetFilterObj( T, IsVoidMatrix ); return HomalgResidueClassMatrix( red, HomalgRing( A ) ); end,
‣ DecideZeroColumnsEffectively ( A, B, T ) | ( function ) |
Returns: a homalg matrix over the ambient ring
DecideZeroColumnsEffectively := function( A, B, T ) local Brel, TT, red; Brel := AugmentedRelations( B ); TT := HomalgVoidMatrix( HomalgRing( Brel ) ); red := DecideZeroColumnsEffectively( Eval( A ), Brel, TT ); SetEval( T, CertainRows( TT, [ 1 .. NumberColumns( B ) ] ) ); ResetFilterObj( T, IsVoidMatrix ); return HomalgResidueClassMatrix( red, HomalgRing( A ) ); end,
‣ RelativeSyzygiesGeneratorsOfRows ( M, M2 ) | ( function ) |
Returns: a homalg matrix over the ambient ring
RelativeSyzygiesGeneratorsOfRows := function( M, M2 ) local M2rel, S; M2rel := StackedRelations( M2 ); S := SyzygiesGeneratorsOfRows( Eval( M ), M2rel ); S := HomalgResidueClassMatrix( S, HomalgRing( M ) ); S := GetRidOfObsoleteRows( S ); if IsZero( S ) then SetIsLeftRegular( M, true ); fi; return S; end,
‣ RelativeSyzygiesGeneratorsOfColumns ( M, M2 ) | ( function ) |
Returns: a homalg matrix over the ambient ring
RelativeSyzygiesGeneratorsOfColumns := function( M, M2 ) local M2rel, S; M2rel := AugmentedRelations( M2 ); S := SyzygiesGeneratorsOfColumns( Eval( M ), M2rel ); S := HomalgResidueClassMatrix( S, HomalgRing( M ) ); S := GetRidOfObsoleteColumns( S ); if IsZero( S ) then SetIsRightRegular( M, true ); fi; return S; end,
Here we list those matrix operations for which homalg provides no fallback method.
‣ InitialMatrix ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> InitialMatrix
(B.1-1))
InitialMatrix := C -> HomalgInitialMatrix( NumberRows( C ), NumberColumns( C ), AmbientRing( HomalgRing( C ) ) ),
‣ InitialIdentityMatrix ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> InitialIdentityMatrix
(B.1-2))
InitialIdentityMatrix := C -> HomalgInitialIdentityMatrix( NumberRows( C ), AmbientRing( HomalgRing( C ) ) ),
‣ ZeroMatrix ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> ZeroMatrix
(B.1-3))
ZeroMatrix := C -> HomalgZeroMatrix( NumberRows( C ), NumberColumns( C ), AmbientRing( HomalgRing( C ) ) ),
‣ IdentityMatrix ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> IdentityMatrix
(B.1-4))
IdentityMatrix := C -> HomalgIdentityMatrix( NumberRows( C ), AmbientRing( HomalgRing( C ) ) ),
‣ Involution ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> Involution
(B.1-5))
Involution := function( M ) local N, R; N := Involution( Eval( M ) ); R := HomalgRing( N ); if not ( HasIsCommutative( R ) and IsCommutative( R ) and HasIsReducedModuloRingRelations( M ) and IsReducedModuloRingRelations( M ) ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( M ) ); fi; return N; end,
‣ TransposedMatrix ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> TransposedMatrix
(B.1-6))
TransposedMatrix := function( M ) local N, R; N := TransposedMatrix( Eval( M ) ); R := HomalgRing( N ); if not ( HasIsCommutative( R ) and IsCommutative( R ) and HasIsReducedModuloRingRelations( M ) and IsReducedModuloRingRelations( M ) ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( M ) ); fi; return N; end,
‣ CertainRows ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> CertainRows
(B.1-7))
CertainRows := function( M, plist ) local N; N := CertainRows( Eval( M ), plist ); if not ( HasIsReducedModuloRingRelations( M ) and IsReducedModuloRingRelations( M ) ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( M ) ); fi; return N; end,
‣ CertainColumns ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> CertainColumns
(B.1-8))
CertainColumns := function( M, plist ) local N; N := CertainColumns( Eval( M ), plist ); if not ( HasIsReducedModuloRingRelations( M ) and IsReducedModuloRingRelations( M ) ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( M ) ); fi; return N; end,
‣ UnionOfRows ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> UnionOfRows
(B.1-9))
UnionOfRows := function( L ) local N; N := UnionOfRows( List( L, Eval ) ); if not ForAll( L, HasIsReducedModuloRingRelations and IsReducedModuloRingRelations ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( L[1] ) ); fi; return N; end,
‣ UnionOfColumns ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> UnionOfColumns
(B.1-11))
UnionOfColumns := function( L ) local N; N := UnionOfColumns( List( L, Eval ) ); if not ForAll( L, HasIsReducedModuloRingRelations and IsReducedModuloRingRelations ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( L[1] ) ); fi; return N; end,
‣ DiagMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> DiagMat
(B.1-13))
DiagMat := function( e ) local N; N := DiagMat( List( e, Eval ) ); if not ForAll( e, HasIsReducedModuloRingRelations and IsReducedModuloRingRelations ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( e[1] ) ); fi; return N; end,
‣ KroneckerMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> KroneckerMat
(B.1-14))
KroneckerMat := function( A, B ) local N; N := KroneckerMat( Eval( A ), Eval( B ) ); if not ForAll( [ A, B ], HasIsReducedModuloRingRelations and IsReducedModuloRingRelations ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( A ) ); fi; return N; end,
‣ DualKroneckerMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> DualKroneckerMat
(B.1-15))
DualKroneckerMat := function( A, B ) local N; N := DualKroneckerMat( Eval( A ), Eval( B ) ); if not ForAll( [ A, B ], HasIsReducedModuloRingRelations and IsReducedModuloRingRelations ) then ## reduce the matrix N w.r.t. the ring relations N := DecideZero( N, HomalgRing( A ) ); fi; return N; end,
‣ MulMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> MulMat
(B.1-16))
MulMat := function( a, A ) return DecideZero( EvalRingElement( a ) * Eval( A ), HomalgRing( A ) ); end, MulMatRight := function( A, a ) return DecideZero( Eval( A ) * EvalRingElement( a ), HomalgRing( A ) ); end,
‣ AddMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> AddMat
(B.1-17))
AddMat := function( A, B ) return DecideZero( Eval( A ) + Eval( B ), HomalgRing( A ) ); end,
‣ SubMat ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> SubMat
(B.1-18))
SubMat := function( A, B ) return DecideZero( Eval( A ) - Eval( B ), HomalgRing( A ) ); end,
‣ Compose ( ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> Compose
(B.1-19))
Compose := function( A, B ) return DecideZero( Eval( A ) * Eval( B ), HomalgRing( A ) ); end,
‣ IsZeroMatrix ( M ) | ( function ) |
Returns: true
or false
(--> IsZeroMatrix
(B.1-20))
IsZeroMatrix := M -> IsZero( DecideZero( Eval( M ), HomalgRing( M ) ) ),
‣ NumberRows ( C ) | ( function ) |
Returns: a nonnegative integer
(--> NumberRows
(B.1-21))
NumberRows := C -> NumberRows( Eval( C ) ),
‣ NumberColumns ( C ) | ( function ) |
Returns: a nonnegative integer
(--> NumberColumns
(B.1-22))
NumberColumns := C -> NumberColumns( Eval( C ) ),
‣ Determinant ( C ) | ( function ) |
Returns: an element of ambient homalg ring
(--> Determinant
(B.1-23))
Determinant := C -> DecideZero( Determinant( Eval( C ) ), HomalgRing( C ) ),
Here we list those matrix operations for which homalg does provide a fallback method. But specifying the below homalgTable
functions increases the performance by replacing the fallback method.
‣ AreEqualMatrices ( A, B ) | ( function ) |
Returns: true
or false
(--> AreEqualMatrices
(B.2-1))
AreEqualMatrices := function( A, B ) return IsZero( DecideZero( Eval( A ) - Eval( B ), HomalgRing( A ) ) ); end,
‣ IsOne ( M ) | ( function ) |
Returns: true
or false
(--> IsIdentityMatrix
(B.2-2))
IsIdentityMatrix := M -> IsOne( DecideZero( Eval( M ), HomalgRing( M ) ) ),
‣ IsDiagonalMatrix ( M ) | ( function ) |
Returns: true
or false
(--> IsDiagonalMatrix
(B.2-3))
IsDiagonalMatrix := M -> IsDiagonalMatrix( DecideZero( Eval( M ), HomalgRing( M ) ) ),
‣ ZeroRows ( C ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> ZeroRows
(B.2-4))
ZeroRows := C -> ZeroRows( DecideZero( Eval( C ), HomalgRing( C ) ) ),
‣ ZeroColumns ( C ) | ( function ) |
Returns: a homalg matrix over the ambient ring
(--> ZeroColumns
(B.2-5))
ZeroColumns := C -> ZeroColumns( DecideZero( Eval( C ), HomalgRing( C ) ) ),
generated by GAPDoc2HTML