Goto Chapter: Top 1 2 3 Bib Ind

3 Examples

3.1 Spectral Filtrations

3.1-1 ExtExt

This is Example B.2 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> wmat := HomalgMatrix( "[ \
> x*y,  y*z,    z,        0,         0,    \
> x^3*z,x^2*z^2,0,        x*z^2,     -z^2, \
> x^4,  x^3*z,  0,        x^2*z,     -x*z, \
> 0,    0,      x*y,      -y^2,      x^2-1,\
> 0,    0,      x^2*z,    -x*y*z,    y*z,  \
> 0,    0,      x^2*y-x^2,-x*y^2+x*y,y^2-y \
> ]", 6, 5, Qxyz );
<A 6 x 5 matrix over an external ring>
gap> W := LeftPresentation( wmat );
<A left module presented by 6 relations for 5 generators>
gap> Y := Hom( Qxyz, W );
<A right module on 5 generators satisfying yet unknown relations>
gap> SetInfoLevel( InfoWarning, 0 );
gap> F := InsertObjectInMultiFunctor( Functor_Hom_for_fp_modules, 2, Y, "TensorY" );
<The functor TensorY for f.p. modules and their maps over computable rings>
gap> SetInfoLevel( InfoWarning, 1 );
gap> G := LeftDualizingFunctor( Qxyz );;
gap> II_E := GrothendieckSpectralSequence( F, G, W );
<A stable homological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 3 ]>
gap> Display( II_E );
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[ [ 0 .. 3 ], [ -3 .. 0 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
. . . .
. . . .
. . . .
---------
Level 2:

s s s s
. . . .
. . . .
. . . .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 3 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
* * * *
. * * *
. . . *
---------
Level 2:

* * s s
* * * *
. * * *
. . . *
---------
Level 3:

* s s s
* s s s
. . s *
. . . *
---------
Level 4:

s s s s
. s s s
. . s s
. . . s
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
<An ascending filtration with degrees [ -3 .. 0 ] and graded parts:

0:   <A non-zero left module presented by yet unknown relations for 23 generator\
s>
-1:   <A non-zero left module presented by 37 relations for 22 generators>
-2:   <A non-zero left module presented by 31 relations for 10 generators>
-3:   <A non-zero left module presented by 33 relations for 5 generators>
of
<A non-zero left module presented by 102 relations for 37 generators>>
gap> ByASmallerPresentation( filt );
<An ascending filtration with degrees [ -3 .. 0 ] and graded parts:
0:   <A non-zero left module presented by 26 relations for 16 generators>
-1:   <A non-zero left module presented by 30 relations for 14 generators>
-2:   <A non-zero left module presented by 18 relations for 7 generators>
-3:   <A non-zero left module presented by 12 relations for 4 generators>
of
<A non-zero left module presented by 48 relations for 20 generators>>
gap> m := IsomorphismOfFiltration( filt );
<A non-zero isomorphism of left modules>


3.1-2 Purity

This is Example B.3 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> wmat := HomalgMatrix( "[ \
> x*y,  y*z,    z,        0,         0,    \
> x^3*z,x^2*z^2,0,        x*z^2,     -z^2, \
> x^4,  x^3*z,  0,        x^2*z,     -x*z, \
> 0,    0,      x*y,      -y^2,      x^2-1,\
> 0,    0,      x^2*z,    -x*y*z,    y*z,  \
> 0,    0,      x^2*y-x^2,-x*y^2+x*y,y^2-y \
> ]", 6, 5, Qxyz );
<A 6 x 5 matrix over an external ring>
gap> W := LeftPresentation( wmat );
<A left module presented by 6 relations for 5 generators>
gap> filt := PurityFiltration( W );
<The ascending purity filtration with degrees [ -3 .. 0 ] and graded parts:

0:   <A codegree-[ 1, 1 ]-pure rank 2 left module presented by 3 relations for 4\
generators>

-1:   <A codegree-1-pure grade 1 left module presented by 4 relations for 3 gene\
rators>

-2:   <A cyclic reflexively pure grade 2 left module presented by 2 relations fo\
r a cyclic generator>

-3:   <A cyclic reflexively pure grade 3 left module presented by 3 relations fo\
r a cyclic generator>
of
<A non-pure rank 2 left module presented by 6 relations for 5 generators>>
gap> W;
<A non-pure rank 2 left module presented by 6 relations for 5 generators>
gap> II_E := SpectralSequence( filt );
<A stable homological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 3 ]>
gap> Display( II_E );
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[ [ 0 .. 3 ], [ -3 .. 0 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
. . . .
. . . .
. . . .
---------
Level 2:

s . . .
. . . .
. . . .
. . . .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 3 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
* * * *
. * * *
. . . *
---------
Level 2:

s . . .
* s . .
. * * .
. . . *
---------
Level 3:

s . . .
* s . .
. . s .
. . . *
---------
Level 4:

s . . .
. s . .
. . s .
. . . s

gap> m := IsomorphismOfFiltration( filt );
<A non-zero isomorphism of left modules>
gap> IsIdenticalObj( Range( m ), W );
true
gap> Source( m );
<A left module presented by 12 relations for 9 generators (locked)>
gap> Display( last );
0,  0,x, -y,0,1, 0,    0,  0,
x*y,0,-z,0, 0,0, 0,    0,  0,
x^2,0,0, -z,1,0, 0,    0,  0,
0,  0,0, 0, y,-z,0,    0,  0,
0,  0,0, 0, 0,x, -y,   -1, 0,
0,  0,0, 0, x,0, -z,   0,  -1,
0,  0,0, 0, 0,-y,x^2-1,0,  0,
0,  0,0, 0, 0,0, 0,    z,  0,
0,  0,0, 0, 0,0, 0,    y-1,0,
0,  0,0, 0, 0,0, 0,    0,  z,
0,  0,0, 0, 0,0, 0,    0,  y,
0,  0,0, 0, 0,0, 0,    0,  x

Cokernel of the map

Q[x,y,z]^(1x12) --> Q[x,y,z]^(1x9),

currently represented by the above matrix
gap> Display( filt );
Degree 0:

0,  0,x, -y,
x*y,0,-z,0,
x^2,0,0, -z

Cokernel of the map

Q[x,y,z]^(1x3) --> Q[x,y,z]^(1x4),

currently represented by the above matrix
----------
Degree -1:

y,-z,0,
0,x, -y,
x,0, -z,
0,-y,x^2-1

Cokernel of the map

Q[x,y,z]^(1x4) --> Q[x,y,z]^(1x3),

currently represented by the above matrix
----------
Degree -2:

Q[x,y,z]/< z, y-1 >
----------
Degree -3:

Q[x,y,z]/< z, y, x >
gap> Display( m );
1,   0,     0,  0,   0,
0,   1,     0,  0,   0,
0,   -y,    -1, 0,   0,
0,   -x,    0,  -1,  0,
-x^2,-x*z,  0,  -z,  0,
0,   0,     x,  -y,  0,
0,   0,     0,  0,   -1,
0,   0,     x^2,-x*y,y,
-x^3,-x^2*z,0,  -x*z,z

the map is currently represented by the above 9 x 5 matrix


3.1-3 A3_Purity

This is Example B.4 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> A3 := RingOfDerivations( Qxyz, "Dx,Dy,Dz" );
Q[x,y,z]<Dx,Dy,Dz>
gap> nmat := HomalgMatrix( "[ \
> 3*Dy*Dz-Dz^2+Dx+3*Dy-Dz,           3*Dy*Dz-Dz^2,     \
> Dx*Dz+Dz^2+Dz,                     Dx*Dz+Dz^2,       \
> Dx*Dy,                             0,                \
> Dz^2-Dx+Dz,                        3*Dx*Dy+Dz^2,     \
> Dx^2,                              0,                \
> -Dz^2+Dx-Dz,                       3*Dx^2-Dz^2,      \
> Dz^3-Dx*Dz+Dz^2,                   Dz^3,             \
> 2*x*Dz^2-2*x*Dx+2*x*Dz+3*Dx+3*Dz+3,2*x*Dz^2+3*Dx+3*Dz\
> ]", 8, 2, A3 );
<A 8 x 2 matrix over an external ring>
gap> N := LeftPresentation( nmat );
<A left module presented by 8 relations for 2 generators>
gap> filt := PurityFiltration( N );
<The ascending purity filtration with degrees [ -3 .. 0 ] and graded parts:
0:   <A zero left module>

-1:   <A cyclic reflexively pure grade 1 left module presented by 1 relation for\
a cyclic generator>

-2:   <A cyclic reflexively pure grade 2 left module presented by 2 relations fo\
r a cyclic generator>

-3:   <A cyclic reflexively pure grade 3 left module presented by 3 relations fo\
r a cyclic generator>
of
<A non-pure grade 1 left module presented by 8 relations for 2 generators>>
gap> II_E := SpectralSequence( filt );
<A stable homological spectral sequence with sheets at levels
[ 0 .. 2 ] each consisting of left modules at bidegrees [ -4 .. 0 ]x
[ 0 .. 3 ]>
gap> Display( II_E );
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[ [ 0 .. 3 ], [ -4 .. 0 ] ]
---------
Level 0:

* * * *
. * * *
. . * *
. . . *
. . . *
---------
Level 1:

* * * *
. . . .
. . . .
. . . .
. . . .
---------
Level 2:

s . . .
. . . .
. . . .
. . . .
. . . .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[ [ -4 .. 0 ], [ 0 .. 3 ] ]
---------
Level 0:

* * * * *
. . * * *
. . . * *
. . . . *
---------
Level 1:

* * * * *
. . * * *
. . . * *
. . . . .
---------
Level 2:

. s . . .
. . s . .
. . . s .
. . . . .
gap> m := IsomorphismOfFiltration( filt );
<A non-zero isomorphism of left modules>
gap> IsIdenticalObj( Range( m ), N );
true
gap> Source( m );
<A left module presented by 6 relations for 3 generators (locked)>
gap> Display( last );
Dx,1/3,1/216*x,
0, Dy, -1/144,
0, Dx, 1/48,
0, 0,  Dz,
0, 0,  Dy,
0, 0,  Dx

Cokernel of the map

R^(1x6) --> R^(1x3), ( for R := Q[x,y,z]<Dx,Dy,Dz> )

currently represented by the above matrix
gap> Display( filt );
Degree 0:

0
----------
Degree -1:

Q[x,y,z]<Dx,Dy,Dz>/< Dx >
----------
Degree -2:

Q[x,y,z]<Dx,Dy,Dz>/< Dy, Dx >
----------
Degree -3:

Q[x,y,z]<Dx,Dy,Dz>/< Dz, Dy, Dx >
gap> Display( m );
1,                     1,
3*Dz+3,                3*Dz,
144*Dz^2-144*Dx+144*Dz,144*Dz^2

the map is currently represented by the above 3 x 2 matrix


3.1-4 TorExt-Grothendieck

This is Example B.5 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> wmat := HomalgMatrix( "[ \
> x*y,  y*z,    z,        0,         0,    \
> x^3*z,x^2*z^2,0,        x*z^2,     -z^2, \
> x^4,  x^3*z,  0,        x^2*z,     -x*z, \
> 0,    0,      x*y,      -y^2,      x^2-1,\
> 0,    0,      x^2*z,    -x*y*z,    y*z,  \
> 0,    0,      x^2*y-x^2,-x*y^2+x*y,y^2-y \
> ]", 6, 5, Qxyz );
<A 6 x 5 matrix over an external ring>
gap> W := LeftPresentation( wmat );
<A left module presented by 6 relations for 5 generators>
gap> F := InsertObjectInMultiFunctor( Functor_TensorProduct_for_fp_modules, 2, W, "TensorW" );
<The functor TensorW for f.p. modules and their maps over computable rings>
gap> G := LeftDualizingFunctor( Qxyz );;
gap> II_E := GrothendieckSpectralSequence( F, G, W );
<A stable cohomological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 3 ]>
gap> Display( II_E );
The associated transposed spectral sequence:

a cohomological spectral sequence at bidegrees
[ [ 0 .. 3 ], [ -3 .. 0 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
. . . .
. . . .
. . . .
---------
Level 2:

s s s s
. . . .
. . . .
. . . .

Now the spectral sequence of the bicomplex:

a cohomological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 3 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
. . * *
---------
Level 1:

* * * *
* * * *
. * * *
. . . *
---------
Level 2:

* * s s
* * * *
. * * *
. . . *
---------
Level 3:

* s s s
. s s s
. . s *
. . . s
---------
Level 4:

s s s s
. s s s
. . s s
. . . s
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
<A descending filtration with degrees [ -3 .. 0 ] and graded parts:

-3:   <A non-zero cyclic torsion left module presented by yet unknown relations \
for a cyclic generator>
-2:   <A non-zero left module presented by 17 relations for 6 generators>
-1:   <A non-zero left module presented by 27 relations for 12 generators>
0:   <A non-zero left module presented by 13 relations for 10 generators>
of
<A left module presented by yet unknown relations for 49 generators>>
gap> ByASmallerPresentation( filt );
<A descending filtration with degrees [ -3 .. 0 ] and graded parts:

-3:   <A non-zero cyclic torsion left module presented by 3 relations for a cycl\
ic generator>
-2:   <A non-zero left module presented by 12 relations for 4 generators>
-1:   <A non-zero left module presented by 21 relations for 8 generators>
0:   <A non-zero left module presented by 11 relations for 10 generators>
of
<A non-zero left module presented by 27 relations for 14 generators>>
gap> m := IsomorphismOfFiltration( filt );
<A non-zero isomorphism of left modules>


3.1-5 TorExt

This is Example B.6 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> wmat := HomalgMatrix( "[ \
> x*y,  y*z,    z,        0,         0,    \
> x^3*z,x^2*z^2,0,        x*z^2,     -z^2, \
> x^4,  x^3*z,  0,        x^2*z,     -x*z, \
> 0,    0,      x*y,      -y^2,      x^2-1,\
> 0,    0,      x^2*z,    -x*y*z,    y*z,  \
> 0,    0,      x^2*y-x^2,-x*y^2+x*y,y^2-y \
> ]", 6, 5, Qxyz );
<A 6 x 5 matrix over an external ring>
gap> W := LeftPresentation( wmat );
<A left module presented by 6 relations for 5 generators>
gap> P := Resolution( W );
<A right acyclic complex containing 3 morphisms of left modules at degrees
[ 0 .. 3 ]>
gap> GP := Hom( P );
<A cocomplex containing 3 morphisms of right modules at degrees [ 0 .. 3 ]>
gap> FGP := GP * P;
<A cocomplex containing 3 morphisms of left complexes at degrees [ 0 .. 3 ]>
gap> BC := HomalgBicomplex( FGP );
<A bicocomplex containing left modules at bidegrees [ 0 .. 3 ]x[ -3 .. 0 ]>
gap> p_degrees := ObjectDegreesOfBicomplex( BC )[1];
[ 0 .. 3 ]
gap> II_E := SecondSpectralSequenceWithFiltration( BC, p_degrees );
<A stable cohomological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 3 ]>
gap> Display( II_E );
The associated transposed spectral sequence:

a cohomological spectral sequence at bidegrees
[ [ 0 .. 3 ], [ -3 .. 0 ] ]
---------
Level 0:

* * * *
* * * *
* * * *
* * * *
---------
Level 1:

* * * *
. . . .
. . . .
. . . .
---------
Level 2:

s s s s
. . . .
. . . .
. . . .

Now the spectral sequence of the bicomplex:

a cohomological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 3 ] ]
---------
Level 0:

* * * *
* * * *
* * * *
* * * *
---------
Level 1:

* * * *
* * * *
* * * *
* * * *
---------
Level 2:

* * s s
* * * *
. * * *
. . . *
---------
Level 3:

* s s s
. s s s
. . s *
. . . s
---------
Level 4:

s s s s
. s s s
. . s s
. . . s
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
<A descending filtration with degrees [ -3 .. 0 ] and graded parts:

-3:   <A non-zero cyclic torsion left module presented by yet unknown relations \
for a cyclic generator>
-2:   <A non-zero left module presented by 15 relations for 6 generators>
-1:   <A non-zero left module presented by 27 relations for 13 generators>
0:   <A non-zero left module presented by 13 relations for 10 generators>
of
<A left module presented by yet unknown relations for 31 generators>>
gap> ByASmallerPresentation( filt );
<A descending filtration with degrees [ -3 .. 0 ] and graded parts:

-3:   <A non-zero cyclic torsion left module presented by 3 relations for a cycl\
ic generator>
-2:   <A non-zero left module presented by 11 relations for 4 generators>
-1:   <A non-zero left module presented by 23 relations for 9 generators>
0:   <A non-zero left module presented by 11 relations for 10 generators>
of
<A non-zero left module presented by 24 relations for 12 generators>>
gap> m := IsomorphismOfFiltration( filt );
<A non-zero isomorphism of left modules>


3.1-6 CodegreeOfPurity

This is Example B.7 in [Bar09].

gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";
Q[x,y,z]
gap> vmat := HomalgMatrix( "[ \
> 0,  0,  x,-z, \
> x*z,z^2,y,0,  \
> x^2,x*z,0,y   \
> ]", 3, 4, Qxyz );
<A 3 x 4 matrix over an external ring>
gap> V := LeftPresentation( vmat );
<A non-torsion left module presented by 3 relations for 4 generators>
gap> wmat := HomalgMatrix( "[ \
> 0,  0,  x,-y, \
> x*y,y*z,z,0,  \
> x^2,x*z,0,z   \
> ]", 3, 4, Qxyz );
<A 3 x 4 matrix over an external ring>
gap> W := LeftPresentation( wmat );
<A non-torsion left module presented by 3 relations for 4 generators>
gap> Rank( V );
2
gap> Rank( W );
2
gap> ProjectiveDimension( V );
2
gap> ProjectiveDimension( W );
2
gap> DegreeOfTorsionFreeness( V );
1
gap> DegreeOfTorsionFreeness( W );
1
gap> CodegreeOfPurity( V );
[ 2 ]
gap> CodegreeOfPurity( W );
[ 1, 1 ]
gap> filtV := PurityFiltration( V );
<The ascending purity filtration with degrees [ -2 .. 0 ] and graded parts:

0:   <A codegree-[ 2 ]-pure rank 2 left module presented by 3 relations for 4 ge\
nerators>
-1:   <A zero left module>
-2:   <A zero left module>
of
<A codegree-[ 2 ]-pure rank 2 left module presented by 3 relations for 4 gener\
ators>>
gap> filtW := PurityFiltration( W );
<The ascending purity filtration with degrees [ -2 .. 0 ] and graded parts:

0:   <A codegree-[ 1, 1 ]-pure rank 2 left module presented by 3 relations for 4\
generators>
-1:   <A zero left module>
-2:   <A zero left module>
of
<A codegree-[ 1, 1 ]-pure rank 2 left module presented by 3 relations for 4 ge\
nerators>>
gap> II_EV := SpectralSequence( filtV );
<A stable homological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 2 ]>
gap> Display( II_EV );
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[ [ 0 .. 2 ], [ -3 .. 0 ] ]
---------
Level 0:

* * *
* * *
* * *
. * *
---------
Level 1:

* * *
. . .
. . .
. . .
---------
Level 2:

s . .
. . .
. . .
. . .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 2 ] ]
---------
Level 0:

* * * *
* * * *
. * * *
---------
Level 1:

* * * *
* * * *
. . * *
---------
Level 2:

* . . .
* . . .
. . * *
---------
Level 3:

* . . .
. . . .
. . . *
---------
Level 4:

. . . .
. . . .
. . . s
gap> II_EW := SpectralSequence( filtW );
<A stable homological spectral sequence with sheets at levels
[ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x
[ 0 .. 2 ]>
gap> Display( II_EW );
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[ [ 0 .. 2 ], [ -3 .. 0 ] ]
---------
Level 0:

* * *
* * *
. * *
. . *
---------
Level 1:

* * *
. . .
. . .
. . .
---------
Level 2:

s . .
. . .
. . .
. . .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[ [ -3 .. 0 ], [ 0 .. 2 ] ]
---------
Level 0:

* * * *
. * * *
. . * *
---------
Level 1:

* * * *
. * * *
. . . *
---------
Level 2:

* . . .
. * . .
. . . *
---------
Level 3:

* . . .
. . . .
. . . *
---------
Level 4:

. . . .
. . . .
. . . s


3.1-7 HomHom

This corresponds to the example of Section 2 in [BR06].

gap> R := HomalgRingOfIntegersInExternalGAP( ) / 2^8;
Z/( 256 )
gap> Display( R );
<A residue class ring>
gap> M := LeftPresentation( [ 2^5 ], R );
<A cyclic left module presented by 1 relation for a cyclic generator>
gap> Display( M );
Z/( 256 )/< |[ 32 ]| >
gap> M;
<A cyclic left module presented by 1 relation for a cyclic generator>
gap> _M := LeftPresentation( [ 2^3 ], R );
<A cyclic left module presented by 1 relation for a cyclic generator>
gap> Display( _M );
Z/( 256 )/< |[ 8 ]| >
gap> _M;
<A cyclic left module presented by 1 relation for a cyclic generator>
gap> alpha2 := HomalgMap( [ 1 ], M, _M );
<A "homomorphism" of left modules>
gap> IsMorphism( alpha2 );
true
gap> alpha2;
<A homomorphism of left modules>
gap> Display( alpha2 );
[ [  1 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
gap> M_ := Kernel( alpha2 );
<A cyclic left module presented by yet unknown relations for a cyclic generato\
r>
gap> alpha1 := KernelEmb( alpha2 );
<A monomorphism of left modules>
gap> seq := HomalgComplex( alpha2 );
<An acyclic complex containing a single morphism of left modules at degrees
[ 0 .. 1 ]>
gap> seq;
<A sequence containing 2 morphisms of left modules at degrees [ 0 .. 2 ]>
gap> IsShortExactSequence( seq );
true
gap> seq;
<A short exact sequence containing 2 morphisms of left modules at degrees
[ 0 .. 2 ]>
gap> Display( seq );
-------------------------
at homology degree: 2
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  8 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 1
Z/( 256 )/< |[ 32 ]| >
-------------------------
[ [  1 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 0
Z/( 256 )/< |[ 8 ]| >
-------------------------
gap> K := LeftPresentation( [ 2^7 ], R );
<A cyclic left module presented by 1 relation for a cyclic generator>
gap> L := RightPresentation( [ 2^4 ], R );
<A cyclic right module on a cyclic generator satisfying 1 relation>
gap> triangle := LHomHom( 4, seq, K, L, "t" );
<An exact triangle containing 3 morphisms of left complexes at degrees
[ 1, 2, 3, 1 ]>
gap> lehs := LongSequence( triangle );
<A sequence containing 14 morphisms of left modules at degrees [ 0 .. 14 ]>
gap> ByASmallerPresentation( lehs );
<A non-zero sequence containing 14 morphisms of left modules at degrees
[ 0 .. 14 ]>
gap> IsExactSequence( lehs );
false
gap> lehs;
<A non-zero left acyclic complex containing
14 morphisms of left modules at degrees [ 0 .. 14 ]>
gap> Assert( 0, IsLeftAcyclic( lehs ) );
gap> Display( lehs );
-------------------------
at homology degree: 14
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  4 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 13
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 12
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 11
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  4 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 10
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 9
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 8
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  4 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 7
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 6
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 5
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  4 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 4
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 3
Z/( 256 )/< |[ 8 ]| >
-------------------------
[ [  2 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 2
Z/( 256 )/< |[ 4 ]| >
-------------------------
[ [  8 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 1
Z/( 256 )/< |[ 16 ]| >
-------------------------
[ [  1 ] ]

modulo [ 256 ]

the map is currently represented by the above 1 x 1 matrix
------------v------------
at homology degree: 0
Z/( 256 )/< |[ 8 ]| >
-------------------------


3.2 Commutative Algebra

3.2-1 Eliminate
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z,l,m";
Q[x,y,z,l,m]
gap> var := Indeterminates( R );
[ x, y, z, l, m ]
gap> x := var[1];; y := var[2];; z := var[3];; l := var[4];; m := var[5];;
gap> L := [ x*m+l-4, y*m+l-2, z*m-l+1, x^2+y^2+z^2-1, x+y-z ];
[ x*m+l-4, y*m+l-2, z*m-l+1, x^2+y^2+z^2-1, x+y-z ]
gap> e := Eliminate( L, [ l, m ] );
<A non-zero right regular 3 x 1 matrix over an external ring>
gap> Display( e );
4*y+z,
4*x-5*z,
21*z^2-8
gap> I := LeftSubmodule( e );
<A torsion-free (left) ideal given by 3 generators>
gap> Display( I );
4*y+z,
4*x-5*z,
21*z^2-8

A (left) ideal generated by the 3 entries of the above matrix
gap> J := LeftSubmodule( "x+y-z, -2*z-3*y+x, x^2+y^2+z^2-1", R );
<A torsion-free (left) ideal given by 3 generators>
gap> I = J;
true

Goto Chapter: Top 1 2 3 Bib Ind

generated by GAPDoc2HTML