‣ ConeByInequalities ( L ) | ( operation ) |
Returns: a Cone
Object
The function takes a list of lists [L_1, L_2, ...] where each L_j represents an inequality and returns the cone defined by them. For example the j'th entry L_j = [a_{j1},a_{j2},...,a_{jn}] corresponds to the inequality \sum_{i=1}^n a_{ji}x_i \geq 0.
‣ ConeByEqualitiesAndInequalities ( Eq, Ineq ) | ( operation ) |
Returns: a Cone
Object
The function takes two lists. The first list is the equalities and the second is the inequalities and returns the cone defined by them.
‣ Cone ( L ) | ( operation ) |
Returns: a Cone
Object
The function takes a list in which every entry represents a ray in the ambient vector space and returns the cone defined by them.
‣ Cone ( cdd_cone ) | ( operation ) |
Returns: a Cone
Object
This function takes a cone defined in CddInterface and converts it to a cone in NConvex
‣ DefiningInequalities ( C ) | ( attribute ) |
Returns: a list
Returns the list of the defining inequalities of the cone C
.
‣ EqualitiesOfCone ( C ) | ( attribute ) |
Returns: a list
Returns the list of the equalities in the defining inequalities of the cone C
.
‣ DualCone ( C ) | ( attribute ) |
Returns: a cone
Returns the dual cone of the cone C
.
‣ FacesOfCone ( C ) | ( attribute ) |
Returns: a list of cones
Returns the list of all faces of the cone C
.
‣ Facets ( C ) | ( attribute ) |
Returns: a list of cones
Returns the list of all facets of the cone C
.
‣ FVector ( C ) | ( attribute ) |
Returns: a list
Returns a list whose i'th entry is the number of faces of dimension i.
‣ RelativeInteriorRay ( C ) | ( attribute ) |
Returns: a list
Returns a relative interior point (or ray) in the cone C
.
‣ HilbertBasis ( C ) | ( attribute ) |
Returns: a list
Returns the Hilbert basis of the cone C
‣ HilbertBasisOfDualCone ( C ) | ( attribute ) |
Returns: a list
Returns the Hilbert basis of the dual cone of the cone C
‣ LinealitySpaceGenerators ( C ) | ( attribute ) |
Returns: a list
Returns a basis of the lineality space of the cone C
.
‣ ExternalCddCone ( C ) | ( attribute ) |
Returns: a cdd object
Converts the cone to a cdd object. The operations of CddInterface can then be applied on this convex object.
‣ ExternalNmzCone ( C ) | ( attribute ) |
Returns: an normaliz object
Converts the cone to a normaliz object. The operations of NormalizInterface can then be applied on this convex object.
‣ AmbientSpaceDimension ( C ) | ( attribute ) |
Returns: an integer
The dimension of the ambient space of the cone, i.e., the space that contains the cone.
‣ LatticePointsGenerators ( C ) | ( attribute ) |
Returns: a list
See LatticePointsGenerators
for polyhedrons. Please note that any cone is a polyhedron.
‣ GridGeneratedByCone ( C ) | ( attribute ) |
Returns: a homalg module
Returns the homalg \mathbb{Z}-module that is generated by the ray generators of the cone.
‣ FactorGrid ( C ) | ( attribute ) |
Returns: a homalg module
Returns the homalg \mathbb{Z}-module that is presented by the matrix whose raws are the ray generators of the cone.
‣ FactorGridMorphism ( C ) | ( attribute ) |
Returns: a homalg morphism
Returns an epimorphism from a free \mathbb{Z}-module to FactorGrid(C)
.
‣ GridGeneratedByOrthogonalCone ( C ) | ( attribute ) |
Returns: a homalg module
Returns the homalg \mathbb{Z}-module that is by generated the ray generators of the orthogonal cone on C
.
‣ IsRegularCone ( C ) | ( property ) |
Returns: true or false
Returns if the cone C
is regular or not.
‣ IsRay ( C ) | ( property ) |
Returns: true or false
Returns if the cone C
is ray or not.
‣ IsZero ( C ) | ( property ) |
Returns: true or false
Returns whether the cone is the zero cone or not.
‣ FourierProjection ( C, m ) | ( operation ) |
Returns: a cone
Returns the projection of the cone on the space (O, x_1,...,x_{m-1}, x_{m+1},...,x_n ).
‣ IntersectionOfCones ( C1, C2 ) | ( operation ) |
Returns: a cone
Returns the intersection.
‣ IntersectionOfCones ( L ) | ( operation ) |
Returns: a cone
The input is a list of cones and the output is their intersection.
‣ Contains ( C1, C2 ) | ( operation ) |
Returns: a true or false
Returns if the cone C1
contains the cone C2
.
‣ IsRelativeInteriorRay ( L, C ) | ( operation ) |
Returns: a true or false
Checks whether the input point (or ray) L
is in the relative interior of the cone C
.
gap> P:= Cone( [ [ 2, 7 ], [ 0, 12 ], [ -2, 5 ] ] ); <A cone in |R^2> gap> d:= DefiningInequalities( P ); [ [ -7, 2 ], [ 5, 2 ] ] gap> Q:= ConeByInequalities( d ); <A cone in |R^2> gap> P=Q; true gap> IsPointed( P ); true gap> RayGenerators( P ); [ [ -2, 5 ], [ 2, 7 ] ] gap> HilbertBasis( P ); [ [ -2, 5 ], [ -1, 3 ], [ 0, 1 ], [ 1, 4 ], [ 2, 7 ] ] gap> HilbertBasis( Q ); [ [ -2, 5 ], [ -1, 3 ], [ 0, 1 ], [ 1, 4 ], [ 2, 7 ] ] gap> P_dual:= DualCone( P ); <A cone in |R^2> gap> RayGenerators( P_dual ); [ [ -7, 2 ], [ 5, 2 ] ] gap> Dimension( P ); 2 gap> List( Facets( P ), RayGenerators ); [ [ [ -2, 5 ] ], [ [ 2, 7 ] ] ] gap> faces := FacesOfCone( P ); [ <A cone in |R^2>, <A cone in |R^2>, <A ray in |R^2>, <A ray in |R^2> ] gap> RelativeInteriorRay( P ); [ -2, 41 ] gap> IsRelativeInteriorRay( [ -2, 41 ], P ); true gap> IsRelativeInteriorRay( [ 2, 7 ], P ); false gap> LinealitySpaceGenerators( P ); [ ] gap> IsRegularCone( P ); false gap> IsRay( P ); false gap> proj_x1:= FourierProjection( P, 2 ); <A cone in |R^1> gap> RayGenerators( proj_x1 ); [ [ -1 ], [ 1 ] ] gap> DefiningInequalities( proj_x1 ); [ [ 0 ] ] gap> R:= Cone( [ [ 4, 5 ], [ -2, 1 ] ] ); <A cone in |R^2> gap> T:= IntersectionOfCones( P, R ); <A cone in |R^2> gap> RayGenerators( T ); [ [ -2, 5 ], [ 2, 7 ] ] gap> W:= Cone( [ [-3,-4 ] ] ); <A ray in |R^2> gap> I:= IntersectionOfCones( P, W ); <A cone in |R^2> gap> RayGenerators( I ); [ ] gap> Contains( P, I ); true gap> Contains( W, I ); true gap> Contains( P, R ); false gap> Contains( R, P ); true gap> cdd_cone:= ExternalCddCone( P ); < Polyhedron given by its V-representation > gap> Display( cdd_cone ); V-representation begin 3 X 3 rational 0 2 7 0 0 12 0 -2 5 end gap> Cdd_Dimension( cdd_cone ); 2 gap> H:= Cdd_H_Rep( cdd_cone ); < Polyhedron given by its H-representation > gap> Display( H ); H-representation begin 2 X 3 rational 0 5 2 0 -7 2 end gap> P:= Cone( [ [ 1, 1, -3 ], [ -1, -1, 3 ], [ 1, 2, 1 ], [ 2, 1, 2 ] ] ); < A cone in |R^3> gap> IsPointed( P ); false gap> Dimension( P ); 3 gap> IsRegularCone( P ); false gap> P; < A cone in |R^3 of dimension 3 with 4 ray generators> gap> RayGenerators( P ); [ [ -1, -1, 3 ], [ 1, 1, -3 ], [ 1, 2, 1 ], [ 2, 1, 2 ] ] gap> d:= DefiningInequalities( P ); [ [ -5, 8, 1 ], [ 7, -4, 1 ] ] gap> facets:= Facets( P ); [ <A cone in |R^3>, <A cone in |R^3> ] gap> faces := FacesOfCone( P ); [ <A cone in |R^3>, <A cone in |R^3>, <A cone in |R^3>, <A cone in |R^3>, <A cone in |R^3> ] gap> FVector( P ); [ 1, 2, 1 ] gap> List( faces, Dimension ); [ 0, 3, 2, 1, 2 ] gap> L_using_4ti2 := [ [ [ 0, 0, 0 ] ], [ [ -2, -1, 10 ], > [ 0, 0, 1 ], [ 2, 1, 2 ] ], [ [ 1, 1, -3 ] ] ];; gap> L_using_Normaliz := [ [ [ 0, 0, 0 ] ], [ [ -1, 0, 7 ], > [ 0, 0, 1 ], [ 1, 0, 5 ] ], [ [ 1, 1, -3 ] ] ];; gap> L := LatticePointsGenerators( P );; gap> L = L_using_4ti2 or L = L_using_Normaliz; true gap> DualCone( P ); < A cone in |R^3> gap> RayGenerators( DualCone( P ) ); [ [ -5, 8, 1 ], [ 7, -4, 1 ] ] gap> Q_x1x3:= FourierProjection(P, 2 ); <A cone in |R^2> gap> RayGenerators( Q_x1x3 ); [ [ -1, 3 ], [ 1, -3 ], [ 1, 1 ] ]
‣ NonReducedInequalities ( C ) | ( operation ) |
Returns: a list
It returns a list of inequalities that define the cone.
generated by GAPDoc2HTML