‣ InclusionFunctorIntoComplexesCategoryByCochains( A ) | ( attribute ) |
Returns: a CAP functor
Returns the natural inclusion into the complexes category by cochains \(A \to \mathcal{C}^b(A)\).
‣ InclusionFunctorIntoComplexesCategoryByChains( A ) | ( attribute ) |
Returns: a CAP functor
Returns the natural inclusion into the complexes category by chains \(A \to \mathcal{C}^b(A)\).
‣ ExtendFunctorToComplexesCategoriesByCochains( F ) | ( attribute ) |
Returns: a CAP functor
Returns the natural extension of the functor \(F: A \to B\) to the complexes categories by cochains \(\mathcal{C}^b(A) \to \mathcal{C}^b(B)\).
‣ ExtendFunctorToComplexesCategoriesByChains( F ) | ( attribute ) |
Returns: a CAP functor
Returns the natural extension of the functor \(F: A \to B\) to the complexes categories by chains \(\mathcal{C}^b(A) \to \mathcal{C}^b(B)\).
‣ ExtendNaturalTransformationToComplexesCategoriesByChains( eta ) | ( attribute ) |
Returns: a natural transformation
The input is a natural transformation \(\eta:F\to G\). The output is its extension to the complexes categories by chains.
‣ ExtendNaturalTransformationToComplexesCategoriesByCochains( eta ) | ( attribute ) |
Returns: a natural transformation
The input is a natural transformation \(\eta:F\to G\). The output is its extension to the complexes categories by cochains.
generated by GAPDoc2HTML