‣ UnderlyingMatrixGroup ( arg ) | ( attribute ) |
‣ UnderlyingRing ( arg ) | ( attribute ) |
‣ UnderlyingTwistingRingMap ( arg ) | ( attribute ) |
‣ MatrixGroupElement ( arg ) | ( attribute ) |
‣ UnderlyingRingElement ( arg ) | ( attribute ) |
‣ StandardCategory ( W, k ) | ( operation ) |
Return the standard category over the commutative base ring k.
gap> LoadPackage( "HeckeCategories" ); true gap> W := Group( [[0,1,0],[1,0,0],[0,0,1]], [[1,0,0],[0,0,1],[0,1,0]] ); Group([ [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0, 1 ] ], [ [ 1, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 0 ] ] ]) gap> k := HomalgFieldOfRationalsInSingular( ); Q gap> Std := StandardCategory( W, k ); StandardCategory( W, Q ) gap> Display( Std ); A CAP category with name StandardCategory( W, Q ): 20 primitive operations were used to derive 78 operations for this category which algorithmically * IsEquippedWithHomomorphismStructure * IsLinearCategoryOverCommutativeRingWithFinitelyGeneratedFreeExternalHoms * IsMonoidalCategory and furthermore mathematically * IsStrictMonoidalCategory gap> R := UnderlyingRing( Std ); Q[a1,a2,a3] gap> ExportVariables( R ); [ a1, a2, a3 ] gap> x := [[0,1,0],[1,0,0],[0,0,1]]; [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0, 1 ] ] gap> rx := x / Std; <An object in StandardCategory( W, Q )> gap> IsWellDefined( rx ); true gap> Display( rx ); [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0, 1 ] ] gap> y := [[1,0,0],[0,0,1],[0,1,0]]; [ [ 1, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 0 ] ] gap> ry := y / Std; <An object in StandardCategory( W, Q )> gap> rx = ry; false gap> z := [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0, 2 ] ]; [ [ 0, 1, 0 ], [ 1, 0, 0 ], [ 0, 0, 2 ] ] gap> IsWellDefined( z / Std ); false gap> rxy := TensorProduct( rx, ry ); <An object in StandardCategory( W, Q )> gap> Display( rxy ); [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ] gap> id_x := IdentityMorphism( rx ); <An identity morphism in StandardCategory( W, Q )> gap> Display( id_x ); 1 gap> phi_x := MorphismConstructor( rx, a1 * a2, rx ); <A morphism in StandardCategory( W, Q )> gap> IsWellDefined( phi_x ); true gap> Display( phi_x ); a1*a2 gap> IsOne( phi_x ); false gap> Display( 2 * a1 * phi_x ); 2*a1^2*a2 gap> Display( -phi_x ); -a1*a2 gap> psi_x := MorphismConstructor( rx, a2 * a1, rx ); <A morphism in StandardCategory( W, Q )> gap> phi_x = psi_x; true gap> Display( phi_x - psi_x ); 0 gap> Display( PreCompose( phi_x, psi_x ) ); a1^2*a2^2 gap> phi_y := MorphismConstructor( ry, a2 * a3, ry ); <A morphism in StandardCategory( W, Q )> gap> phi_x = phi_y; false gap> zero_xy := ZeroMorphism( rx, ry ); <A zero morphism in StandardCategory( W, Q )> gap> Display( zero_xy ); 0 gap> zeta_xy := MorphismConstructor( rx, a1*a2, ry ); <A morphism in StandardCategory( W, Q )> gap> IsZero( zeta_xy ); true gap> IsEqualForMorphisms( zero_xy, zeta_xy ); true gap> IsCongruentForMorphisms( zero_xy, zeta_xy ); true gap> eta_x := a3 * phi_x; <A morphism in StandardCategory( W, Q )> gap> Display( eta_x ); a1*a2*a3 gap> end_x := BasisOfExternalHom( rx, rx ); [ <An identity morphism in StandardCategory( W, Q )> ] gap> Display( end_x[1] ); 1 gap> CoefficientsOfMorphism( eta_x ); [ a1*a2*a3 ] gap> BasisOfExternalHom( rx, ry ); [ ] gap> CoefficientsOfMorphism( zeta_xy ); [ ] gap> I := TensorUnit( Std ); <An object in StandardCategory( W, Q )> gap> Display( I ); [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] gap> chi_xy := TensorProduct( phi_x, phi_y ); <A morphism in StandardCategory( W, Q )> gap> Display( chi_xy ); a1^2*a2*a3
‣ IsStandardCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of standard categories.
‣ IsCellInStandardCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of cells in a standard category.
‣ IsObjectInStandardCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of objects in a standard category.
‣ IsMorphismInStandardCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in a standard category.
generated by GAPDoc2HTML