Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

8 The elementary topos of decorated finite quivers
 8.1 Constructors
 8.2 Attributes
 8.3 Operations
 8.4 Global variables
 8.5 GAP Categories
 8.6 Example

8 The elementary topos of decorated finite quivers

8.1 Constructors

8.1-1 CategoryOfDecoratedQuivers
‣ CategoryOfDecoratedQuivers( quiver, decoration_of_vertices, decoration_of_arrows )( operation )

Returns: a CAP category

Construct the category of decorated quivers over the decorating quiver quiver and the two lists of colors decoration_of_vertices and decoration_of_arrows.

8.1-2 CreateDecoratedQuiver
‣ CreateDecoratedQuiver( arg1, arg2, arg3 )( operation )

8.1-3 CreateDecoratedQuiverMorphism
‣ CreateDecoratedQuiverMorphism( arg1, arg2, arg3, arg4 )( operation )

8.1-4 Subobject
‣ Subobject( arg1, arg2, arg3 )( operation )

8.1-5 Subobject
‣ Subobject( arg1, arg2 )( operation )

8.2 Attributes

8.2-1 UnderlyingCategory
‣ UnderlyingCategory( decorated_fin_quivers )( attribute )

8.2-2 DecorationOfVertices
‣ DecorationOfVertices( decorated_fin_quivers )( attribute )

8.2-3 DecorationOfArrows
‣ DecorationOfArrows( decorated_fin_quivers )( attribute )

8.2-4 YonedaEmbeddingOfUnderlyingCategory
‣ YonedaEmbeddingOfUnderlyingCategory( decorated_fin_quivers )( attribute )

8.2-5 Arrows
‣ Arrows( quiver )( attribute )

8.2-6 SvgString
‣ SvgString( cell )( attribute )

8.2-7 DotVertexLabelledDigraph
‣ DotVertexLabelledDigraph( cell )( operation )

8.3 Operations

8.4 Global variables

8.5 GAP Categories

8.5-1 IsCategoryOfDecoratedQuivers
‣ IsCategoryOfDecoratedQuivers( category )( filter )

Returns: true or false

The GAP category of the category of quivers.

8.5-2 IsCellInCategoryOfDecoratedQuivers
‣ IsCellInCategoryOfDecoratedQuivers( cell )( filter )

Returns: true or false

The GAP category of cells in the category of quivers.

8.5-3 IsObjectInCategoryOfDecoratedQuivers
‣ IsObjectInCategoryOfDecoratedQuivers( obj )( filter )

Returns: true or false

The GAP category of objects in the category of quivers.

8.5-4 IsMorphismInCategoryOfDecoratedQuivers
‣ IsMorphismInCategoryOfDecoratedQuivers( mor )( filter )

Returns: true or false

The GAP category of morphisms in the category of quivers.

8.6 Example

In the following we construct the category of decorated finite quivers:

gap> LoadPackage( "FunctorCategories" );
true
gap> FinQuivers;
CategoryOfQuiversEnrichedOver( SkeletalFinSets )
gap> decorating_quiver := SubobjectClassifier( FinQuivers );
<An object in CategoryOfQuiversEnrichedOver( SkeletalFinSets )>
gap> Display( decorating_quiver );
( { 0, 1 },
  { 0 := [ 0, 0 ], 1 := [ 1, 0 ], 2 := [ 0, 1 ],
    3 := [ 1, 1 ], 4 := [ 1, 1 ] } )
gap> DecoratedFinQuivers :=
>   CategoryOfDecoratedQuivers( decorating_quiver,
>           [ "magenta", "cyan" ],
>           [ "red", "brown", "orange", "blue", "green" ] );
CategoryOfDecoratedQuivers( decorating_quiver )
gap> B := TerminalObject( DecoratedFinQuivers );
<An object in CategoryOfDecoratedQuivers( decorating_quiver )>
gap> Display( B );
( { 0 := "magenta", 1 := "cyan" },
  { 0 := [ 0, 0, "red" ], 1 := [ 1, 0, "brown" ], 2 := [ 0, 1, "orange" ],
    3 := [ 1, 1, "blue" ], 4 := [ 1, 1, "green" ] } )
gap> iota := Subobject( B, [ 0 ], [ 3, 4 ] );
<A monomorphism in CategoryOfDecoratedQuivers( decorating_quiver )>
gap> Display( iota );
Image of <(V)>:
{ 0, 1 } ⱶ[ 0, 1 ]→ { 0, 1 }

Image of <(A)>:
{ 0, 1 } ⱶ[ 3, 4 ]→ { 0,..., 4 }

A morphism in CategoryOfDecoratedQuivers( decorating_quiver )
given by the above data
gap> dq1 := CreateDecoratedQuiver( DecoratedFinQuivers,
>                [ 0, 1, 1, 1 ], # decoration of [ 0, 1, 2, 3 ]
>                [ 0,0,0,  0,1,2,  1,0,1,  1,2,3,  2,3,4,  3,2,3 ] );
<An object in CategoryOfDecoratedQuivers( decorating_quiver )>
gap> Display( dq1 );
( { 0 := "magenta", 1 := "cyan", 2 := "cyan", 3 := "cyan" },
  { 0 := [ 0, 0, "red" ], 1 := [ 0, 1, "orange" ], 2 := [ 1, 0, "brown" ],
    3 := [ 1, 2, "blue" ], 4 := [ 2, 3, "green" ], 5 := [ 3, 2, "blue" ] } )
gap> IsWellDefined( dq1 );
true
gap> omega := SubobjectClassifier( DecoratedFinQuivers );
<An object in CategoryOfDecoratedQuivers( decorating_quiver )>
gap> Display( omega );
( { 0 := "magenta", 1 := "cyan", 2 := "magenta", 3 := "cyan" },
  { 0 := [ 0, 0, "red" ], 1 := [ 1, 0, "brown" ], 2 := [ 0, 1, "orange" ],
    3 := [ 1, 1, "blue" ], 4 := [ 1, 1, "green" ], 5 := [ 2, 0, "red" ],
    6 := [ 3, 0, "brown" ], 7 := [ 2, 1, "orange" ], 8 := [ 3, 1, "blue" ],
    9 := [ 3, 1, "green" ], 10 := [ 0, 2, "red" ], 11 := [ 1, 2, "brown" ],
    12 := [ 0, 3, "orange" ], 13 := [ 1, 3, "blue" ], 14 := [ 1, 3, "green" ],
    15 := [ 2, 2, "red" ], 16 := [ 3, 2, "brown" ], 17 := [ 2, 3, "orange" ],
    18 := [ 3, 3, "blue" ], 19 := [ 3, 3, "green" ], 20 := [ 2, 2, "red" ],
    21 := [ 3, 2, "brown" ], 22 := [ 2, 3, "orange" ], 23 := [ 3, 3, "blue" ],
    24 := [ 3, 3, "green" ] } )
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ind

generated by GAPDoc2HTML