‣ InfoConstructibleImage | ( info class ) |
‣ DecreaseCodimensionByFixingVariables ( A ) | ( operation ) |
Returns: a list
‣ ClosedSubsetWithGenericallyZeroDimensionalFibersOnComponentOfProjection ( A ) | ( operation ) |
Returns: a list
‣ LocallyClosedApproximationOfProjection ( A ) | ( operation ) |
Returns: a list
A list consisting of two entries. The first entry is a locally closed approximation of the projection of A. The second entry is a list of closed subsets of A which upon projection yield the remaining parts of the constructible projection of A.
‣ LocallyClosedApproximationOfImage ( phi ) | ( operation ) |
Returns: a list
A list consisting of two entries. The first entry is a locally closed approximation of the image of phi. The second entry is a list of closed subsets of the domain of phi the images of which yield the remaining parts of the constructible image of phi.
‣ LocallyClosedApproximationOfProjectionViaGenericFreeness ( A ) | ( operation ) |
Returns: a list
A list consisting of two entries. The first entry is a locally closed approximation of the projection of A (using generic freeness). The second entry is a list of closed subsets of A which upon projection yield the remaining parts of the constructible projection of A.
‣ LocallyClosedApproximationOfImageViaGenericFreeness ( phi ) | ( operation ) |
Returns: a list
A list consisting of two entries. The first entry is a locally closed approximation of the image of phi (using generic freeness). The second entry is a list of closed subsets of the domain of phi the images of which yield the remaining parts of the constructible image of phi.
‣ ConstructibleProjection ( A ) | ( operation ) |
Returns: a constructible object as a union of formal multiple differences
Compute the projection of A as a constructible subset of BaseOfFibration
( A ).
gap> Q := HomalgFieldOfRationalsInSingular( ); Q gap> B := Q * "a,b"; Q[a,b] gap> R := B * "x,y"; Q[a,b][x,y] gap> gamma := ClosedSubsetOfSpecByRadicalColumn( "[x-a,x*y-b]", R ); V_{Q[a,b][x,y]}( <...> ) gap> im := ConstructibleProjection( gamma ); ( V_{Q[a,b]}( I1 ) \ V_{Q[a,b]}( J1_1 ) ) ∪ ( V_{Q[a,b]}( I2 ) \ V_{Q[a,b]}( J2_1 ) ) gap> cim := CanonicalObject( im ); ( V_{Q[a,b]}( I1 ) \ V_{Q[a,b]}( J1 ) ) ∪ ( V_{Q[a,b]}( I2 ) \ V_{Q[a,b]}( J2 ) ) gap> IsLocallyClosed( cim ); false gap> Length( cim ); 2 gap> Dimension( cim[1].I ); 2 gap> Dimension( cim[1].J ); 1 gap> Dimension( cim[2].I ); 0
gap> zz := HomalgRingOfIntegersInSingular( ); Z gap> R := zz * "x"; Z[x] gap> gamma := ClosedSubsetOfSpecByRadicalColumn( "[2*x+1]", R ); V_{Z[x]}( <...> ) gap> im := ConstructibleProjection( gamma ); ( V_{Z}( I1 ) \ V_{Z}( J1_1 ) ) gap> Display( im ); ( V( <> ) \ V( <2> ) ) gap> char := -im; ( V_{Z}( I1 ) \ V_{Z}( J1_1 ) \ .. \ V_{Z}( J1_3 ) ) gap> Display( char ); ( V( <2> ) \ ∅ \ ∅ \ ∅ ) gap> char := CanonicalObject( char ); V_{Z}( <...> ) gap> Display( char ); V( <2> )
gap> Q := HomalgFieldOfRationalsInSingular( ); Q gap> B := Q * "a"; Q[a] gap> R := B * "b"; Q[a][b] gap> V1 := -ClosedSubsetOfSpec( "a*b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V1 ); V( <> ) \ V( <a*b> ) gap> W1 := ConstructibleProjection( V1 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) ) gap> Display( W1 ); ( V( <> ) \ V( <a> ) ) gap> V2 := ClosedSubsetOfSpec( "a", R ) - ClosedSubsetOfSpec( "b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V2 ); V( <a> ) \ V( <b> ) gap> W2 := ConstructibleProjection( V2 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) ) gap> Display( W2 ); ( V( <a> ) \ ∅ ) gap> V3 := ClosedSubsetOfSpec( "a^2-1", R ) - ClosedSubsetOfSpec( "b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V3 ); V( <a^2-1> ) \ V( <b> ) gap> W3 := ConstructibleProjection( V3 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) ) gap> Display( W3 ); ( V( <a^2-1> ) \ ∅ ) gap> V4 := ClosedSubsetOfSpec( "b-a^2+1", R ) - ClosedSubsetOfSpec( "a*b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V4 ); V( <b-a^2+1> ) \ V( <a*b> ) gap> W4 := ConstructibleProjection( V4 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) \ .. \ V_{Q[a]}( J1_3 ) ) gap> Display( W4 ); ( V( <> ) \ V( <a> ) \ V( <a-1> ) \ V( <a+1> ) ) gap> V5 := (ClosedSubsetOfSpec( "b-a^2+1", R ) + ClosedSubsetOfSpec( "a-1", R )) > - ClosedSubsetOfSpec( "a*b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V5 ); { V( <b-a^2+1> ) ∪ V( <a-1> ) } \ V( <a*b> ) gap> W5 := ConstructibleProjection( V5 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) \ V_{Q[a]}( J1_2 ) ) gap> Display( W5 ); ( V( <> ) \ V( <a+1> ) \ V( <a> ) ) gap> V6 := (ClosedSubsetOfSpec( "b-a^2+1", R ) + ClosedSubsetOfSpec( "a^2-1", R )) > - ClosedSubsetOfSpec( "a*b", R ); V_{Q[a][b]}( I ) \ V_{Q[a][b]}( J ) gap> Display( V6 ); { V( <b-a^2+1> ) ∪ V( <a^2-1> ) } \ V( <a*b> ) gap> W6 := ConstructibleProjection( V6 ); ( V_{Q[a]}( I1 ) \ V_{Q[a]}( J1_1 ) ) ∪ ( V_{Q[a]}( I2 ) \ V_{Q[a]}( J2_1 ) ) gap> Display( W6 ); ( V( <> ) \ V( <a> ) ) ∪ ( V( <a^2-1> ) \ ∅ ) gap> zz := HomalgRingOfIntegersInSingular( ); Z gap> S := zz * "a"; Z[a] gap> V7 := ClosedSubsetOfSpec( "2*a^2-2*a+1", S ) > - ClosedSubsetOfSpec( "3*a-1", S ) - ClosedSubsetOfSpec( "a+1", S ); V_{Z[a]}( I ) \ V_{Z[a]}( J ) gap> Display( V7 ); V( <2*a^2-2*a+1> ) \ { V( <3*a-1> ) ∪ V( <a+1> ) } gap> W7 := ConstructibleProjection( V7 ); ( V_{Z}( I1 ) \ V_{Z}( J1_1 ) \ V_{Z}( J1_2 ) ) gap> Display( W7 ); ( V( <> ) \ V( <2> ) \ V( <5> ) )
‣ ConstructibleImage ( phi ) | ( operation ) |
Returns: a constructible object as a union of formal multiple differences
Compute the image of the morphism defined by the morphism phi of affine rings as a constructible subset.
‣ Visualize ( A ) | ( operation ) |
Returns: nothing
Opens a PDF with the graph of datastructure underlying the constructible object A, provided it was created using AsUnionOfMultipleDifferences
.
generated by GAPDoc2HTML