‣ IsEagerSliceCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of an eager slice category.
‣ IsCellInAnEagerSliceCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of cells in an eager slice category.
‣ IsObjectInAnEagerSliceCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of objects in an eager slice category.
‣ IsMorphismInAnEagerSliceCategory ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in an eager slice category.
‣ IsEagerSliceCategoryOverTensorUnit ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of an eager slice category over the tensor unit.
‣ IsCellInAnEagerSliceCategoryOverTensorUnit ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of cells in an eager slice category over the tensor unit.
‣ IsObjectInAnEagerSliceCategoryOverTensorUnit ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of objects in an eager slice category over the tensor unit.
‣ IsMorphismInAnEagerSliceCategoryOverTensorUnit ( arg ) | ( filter ) |
Returns: true
or false
The GAP category of morphisms in an eager slice category over the tensor unit.
‣ SliceCategory ( B ) | ( attribute ) |
‣ SliceCategoryOverTensorUnit ( M ) | ( attribute ) |
‣ AsSliceCategoryCell ( mor ) | ( attribute ) |
#@if ValueOption( "no_precompiled_code" ) <> true gap> LoadPackage( "SubcategoriesForCAP", false ); true gap> LoadPackage( "Toposes", ">= 2024.02-04", false ); true gap> LoadPackage( "FinSetsForCAP", ">= 2024.02-02", false ); true gap> B := SubobjectClassifier( SkeletalFinSets ); |2| gap> S := SliceCategory( B ); A slice category of SkeletalFinSets gap> Display( S ); A CAP category with name A slice category of SkeletalFinSets: 50 primitive operations were used to derive 314 operations for this category which algorithmically * IsCategoryWithDecidableColifts * IsCategoryWithDecidableLifts * IsEquippedWithHomomorphismStructure * IsFiniteBicompleteCategory * IsDistributiveCategory and not yet algorithmically * IsElementaryTopos gap> o0 := MapOfFinSets( B, [ 1, 1 ], B ) / S; An object in the slice category given by: |2| → |2| gap> o1 := MapOfFinSets( FinSet( 3 ), [ 0, 1, 0 ], B ) / S; An object in the slice category given by: |3| → |2| gap> o2 := MapOfFinSets( FinSet( 4 ), [ 1, 0, 1, 0 ], B ) / S; An object in the slice category given by: |4| → |2| gap> IsWellDefined( o0 ); true gap> IsWellDefined( o1 ); true gap> IsWellDefined( o2 ); true gap> IsHomSetInhabited( o1, o0 ); false gap> IsHomSetInhabited( o0, o1 ); true gap> IsHomSetInhabited( o1, o2 ); true gap> IsHomSetInhabited( o2, o1 ); true gap> iota := UniversalMorphismFromInitialObject( o1 ); A morphism in the slice category given by: |0| → |3| gap> Display( iota ); ∅ ⱶ[ ]→ { 0, 1, 2 } A morphism in the slice category given by the above data gap> IsInitial( Source( iota ) ); true gap> tau := UniversalMorphismIntoTerminalObject( o2 ); A morphism in the slice category given by: |4| → |2| gap> Display( tau ); { 0,..., 3 } ⱶ[ 1, 0, 1, 0 ]→ { 0, 1 } A morphism in the slice category given by the above data gap> IsTerminal( Target( tau ) ); true gap> n := MapOfFinSets( FinSet( 3 ), [ 2, 0, 3 ], FinSet( 4 ) ); |3| → |4| gap> IsWellDefined( n ); true gap> n := AsSliceCategoryCell( o1, n, o2 ); A morphism in the slice category given by: |3| → |4| gap> IsWellDefined( n ); false gap> m1 := MapOfFinSets( FinSet( 3 ), [ 1, 0, 3 ], FinSet( 4 ) ); |3| → |4| gap> m1 := AsSliceCategoryCell( o1, m1, o2 ); A morphism in the slice category given by: |3| → |4| gap> IsWellDefined( m1 ); true gap> IsSplitEpimorphism( m1 ); false gap> m2 := MapOfFinSets( FinSet( 4 ), [ 1, 2, 1, 0 ], FinSet( 3 ) ); |4| → |3| gap> m2 := AsSliceCategoryCell( o2, m2, o1 ); A morphism in the slice category given by: |4| → |3| gap> IsWellDefined( m2 ); true gap> IsSplitEpimorphism( m2 ); true gap> m3 := PreCompose( m1, m2 ); A morphism in the slice category given by: |3| → |3| gap> IsWellDefined( m3 ); true gap> IsOne( m3 ); false gap> m4 := Inverse( m3 ); A morphism in the slice category given by: |3| → |3| gap> IsWellDefined( m4 ); true gap> m5 := PreCompose( m2, m1 ); A morphism in the slice category given by: |4| → |4| gap> IsWellDefined( m5 ); true gap> IsOne( m5 ); false gap> t := DistinguishedObjectOfHomomorphismStructure( S ); |1| gap> H := MorphismsOfExternalHom( o1, o2 );; gap> Length( H ); 8 gap> h := HomStructure( o1, o2 ); |8| gap> HomStructure( m1, m2 ); |16| → |4| gap> th := MorphismsOfExternalHom( t, h ); [ |1| → |8|, |1| → |8|, |1| → |8|, |1| → |8|, |1| → |8|, |1| → |8|, |1| → |8|, |1| → |8| ] gap> th = List( H, InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure ); true gap> H = List( th, m -> > InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( o1, o2, m ) ); true gap> Display( o1 ); { 0, 1, 2 } ⱶ[ 0, 1, 0 ]→ { 0, 1 } An object in the slice category given by the above data gap> Po1 := PowerObject( o1 ); An object in the slice category given by: |6| → |2| gap> Display( Po1 ); { 0,..., 5 } ⱶ[ 0, 0, 0, 0, 1, 1 ]→ { 0, 1 } An object in the slice category given by the above data gap> e_o1 := PowerObjectLeftEvaluationMorphism( o1 ); A morphism in the slice category given by: |10| → |4| gap> IsWellDefined( e_o1 ); true gap> Display( e_o1 ); { 0,..., 9 } ⱶ[ 0, 1, 0, 1, 2, 3, 0, 0, 1, 1 ]→ { 0,..., 3 } A morphism in the slice category given by the above data gap> sing_o1 := SingletonMorphism( o1 ); A morphism in the slice category given by: |3| → |6| gap> Display( sing_o1 ); { 0, 1, 2 } ⱶ[ 1, 5, 2 ]→ { 0,..., 5 } A morphism in the slice category given by the above data gap> IsWellDefined( sing_o1 ); true gap> Display( o2 ); { 0,..., 3 } ⱶ[ 1, 0, 1, 0 ]→ { 0, 1 } An object in the slice category given by the above data gap> Po2 := PowerObject( o2 ); An object in the slice category given by: |8| → |2| gap> Display( Po2 ); { 0,..., 7 } ⱶ[ 0, 0, 0, 0, 1, 1, 1, 1 ]→ { 0, 1 } An object in the slice category given by the above data gap> e_o2 := PowerObjectLeftEvaluationMorphism( o2 ); A morphism in the slice category given by: |16| → |4| gap> IsWellDefined( e_o2 ); true gap> Display( e_o2 ); { 0,..., 15 } ⱶ[ 2, 3, 2, 3, 0, 1, 0, 1, 2, 2, 3, 3, 0, 0, 1, 1 ]→ { 0,..., 3 } A morphism in the slice category given by the above data gap> sing_o2 := SingletonMorphism( o2 ); A morphism in the slice category given by: |4| → |8| gap> Display( sing_o2 ); { 0,..., 3 } ⱶ[ 5, 1, 6, 2 ]→ { 0,..., 7 } A morphism in the slice category given by the above data gap> IsWellDefined( sing_o2 ); true gap> Display( m1 ); { 0, 1, 2 } ⱶ[ 1, 0, 3 ]→ { 0,..., 3 } A morphism in the slice category given by the above data gap> Pm1 := PowerObjectFunctorial( m1 ); A morphism in the slice category given by: |8| → |6| gap> Display( Pm1 ); { 0,..., 7 } ⱶ[ 0, 1, 2, 3, 4, 5, 4, 5 ]→ { 0,..., 5 } A morphism in the slice category given by the above data gap> IsWellDefined( Pm1 ); true gap> Display( m2 ); { 0,..., 3 } ⱶ[ 1, 2, 1, 0 ]→ { 0, 1, 2 } A morphism in the slice category given by the above data gap> Pm2 := PowerObjectFunctorial( m2 ); A morphism in the slice category given by: |6| → |8| gap> Display( Pm2 ); { 0,..., 5 } ⱶ[ 0, 2, 1, 3, 4, 7 ]→ { 0,..., 7 } A morphism in the slice category given by the above data gap> IsWellDefined( Pm2 ); true gap> omega := SubobjectClassifier( S ); An object in the slice category given by: |4| → |2| gap> Display( omega ); { 0,..., 3 } ⱶ[ 0, 0, 1, 1 ]→ { 0, 1 } An object in the slice category given by the above data gap> o12 := DirectProduct( o1, o2 ); An object in the slice category given by: |6| → |2| gap> Display( o12 ); { 0,..., 5 } ⱶ[ 1, 0, 0, 1, 0, 0 ]→ { 0, 1 } An object in the slice category given by the above data gap> ff := MapOfFinSets( SourceOfUnderlyingMorphism( o12 ), > [ 3, 1, 1, 2, 1, 0 ], > SourceOfUnderlyingMorphism( omega ) );; gap> f := MorphismConstructor( o12, ff, omega ); A morphism in the slice category given by: |6| → |4| gap> IsWellDefined( f ); true gap> g := PLeftTransposeMorphism( o1, o2, f ); A morphism in the slice category given by: |3| → |8| gap> expo1o1 := Exponential( o1, o1 ); An object in the slice category given by: |5| → |2| gap> Display( expo1o1 ); { 0,..., 4 } ⱶ[ 0, 0, 0, 0, 1 ]→ { 0, 1 } An object in the slice category given by the above data gap> evo1o1 := CartesianLeftEvaluationMorphism( o1, o1 ); A morphism in the slice category given by: |9| → |3| gap> Display( evo1o1 ); { 0,..., 8 } ⱶ[ 0, 2, 0, 2, 1, 0, 0, 2, 2 ]→ { 0, 1, 2 } A morphism in the slice category given by the above data #@fi
We type-check DualOverTensorUnit via LazyCategories.
gap> LoadPackage( "SubcategoriesForCAP", false ); true gap> LoadPackage( "LazyCategories", false ); true gap> T := TerminalCategoryWithMultipleObjects(); TerminalCategoryWithMultipleObjects( ) gap> L := LazyCategory( T : primitive_operations := true, optimize := 0 ); LazyCategory( TerminalCategoryWithMultipleObjects( ) ) gap> a := "a" / T; <A zero object in TerminalCategoryWithMultipleObjects( )> gap> I := MorphismConstructor( T, a, "I", TensorUnit( T ) ) / L; <An evaluated morphism in LazyCategory( TerminalCategoryWithMultipleObjects( ) )> gap> DualOverTensorUnit( L, I ); <A morphism in LazyCategory( TerminalCategoryWithMultipleObjects( ) )>
gap> LoadPackage( "SubcategoriesForCAP", false ); true gap> Q := HomalgFieldOfRationalsInSingular( ); Q gap> R := Q["x,y"]; Q[x,y] gap> P := CategoryOfRows( R ); Rows( Q[x,y] ) gap> S := SliceCategoryOverTensorUnit( P ); SliceCategoryOverTensorUnit( Rows( Q[x,y] ) ) gap> I := HomalgMatrix( "[ x^2, x*y ]", 2, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> J := HomalgMatrix( "[ x ]", 1, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> phi := HomalgMatrix( "[ x, y ]", 2, 1, R ) / P; <A morphism in Rows( Q[x,y] )> gap> phi := MorphismConstructor( S, I, phi, J ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> IsWellDefined( phi ); true gap> Ip := HomalgMatrix( "[ x*y, x*y^2 ]", 2, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> Jp := HomalgMatrix( "[ x ]", 1, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> psi := HomalgMatrix( "[ y, y^2 ]", 2, 1, R ) / P; <A morphism in Rows( Q[x,y] )> gap> psi := MorphismConstructor( S, Ip, psi, Jp ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> IsWellDefined( psi ); true gap> TensorProductOnObjects( I, J ); An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> TensorProductOnMorphisms( phi, psi ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> LeftUnitor( I ); A morphism in the slice category given by: <An identity morphism in Rows( Q[x,y] )> gap> RightUnitor( I ); A morphism in the slice category given by: <An identity morphism in Rows( Q[x,y] )> gap> AssociatorLeftToRight( I, J, Ip ); A morphism in the slice category given by: <An identity morphism in Rows( Q[x,y] )> gap> AssociatorRightToLeft( I, J, Ip ); A morphism in the slice category given by: <An identity morphism in Rows( Q[x,y] )> gap> Braiding( I, J ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )>
Iteratively applying \underline{Hom}(J,-) to the universal morphism \iota: I \to T, where T is the terminal object of the slice category, might never become an isomorphism. However, in this example it does.
gap> LoadPackage( "SubcategoriesForCAP", false ); true gap> Q := HomalgFieldOfRationalsInSingular( ); Q gap> R := Q["x,y"]; Q[x,y] gap> P := CategoryOfRows( R ); Rows( Q[x,y] ) gap> S := SliceCategoryOverTensorUnit( P ); SliceCategoryOverTensorUnit( Rows( Q[x,y] ) ) gap> I := HomalgMatrix( "[ x^2, x*y ]", 2, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> J := HomalgMatrix( "[ x ]", 1, 1, R ) / P / S; An object in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> iota := InternalHom( UniversalMorphismIntoTerminalObject( J ), I ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> Display( iota ); Source: A row module over Q[x,y] of rank 2 Matrix: x,0, 0,x Range: A row module over Q[x,y] of rank 2 A morphism in Rows( Q[x,y] ) A morphism in the slice category given by the above data gap> iota := InternalHom( J, iota ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> Display( iota ); Source: A row module over Q[x,y] of rank 2 Matrix: y, x Range: A row module over Q[x,y] of rank 1 A morphism in Rows( Q[x,y] ) A morphism in the slice category given by the above data gap> iota := InternalHom( J, iota ); A morphism in the slice category given by: <A morphism in Rows( Q[x,y] )> gap> Display( iota ); Source: A row module over Q[x,y] of rank 1 Matrix: 1 Range: A row module over Q[x,y] of rank 1 A morphism in Rows( Q[x,y] ) A morphism in the slice category given by the above data gap> iota = InternalHom( J, iota ); true gap> IsIsomorphism( iota ); true gap> Display( Source( iota ) ); Source: A row module over Q[x,y] of rank 1 Matrix: 1 Range: A row module over Q[x,y] of rank 1 A morphism in Rows( Q[x,y] ) An object in the slice category given by the above data gap> Source( iota ) = Target( iota ); true
Double pushout in the slice category of SkeletalFinSets
over its subobject classifier.
gap> LoadPackage( "SubcategoriesForCAP" ); true gap> omega := SubobjectClassifier( SkeletalFinSets ); |2| gap> S := SliceCategory( omega ); A slice category of SkeletalFinSets gap> k := omega; |2| gap> K := MapOfFinSets( k, [ 1, 0 ], omega ) / S; An object in the slice category given by: |2| → |2| gap> l := FinSet( 6 ); |6| gap> L := MapOfFinSets( l, [ 1, 0, 1, 0, 0, 1 ], omega ) / S; An object in the slice category given by: |6| → |2| gap> r := FinSet( 7 ); |7| gap> R := MapOfFinSets( r, [ 1, 0, 0, 1, 1, 0, 0 ], omega ) / S; An object in the slice category given by: |7| → |2| gap> lambda := AsSliceCategoryCell( K, MapOfFinSets( k, [ 0, 1 ], l ), L ); A morphism in the slice category given by: |2| → |6| gap> rho := AsSliceCategoryCell( K, MapOfFinSets( k, [ 0, 1 ], r ), R ); A morphism in the slice category given by: |2| → |7| gap> g := FinSet( 8 ); |8| gap> G := MapOfFinSets( g, [ 1, 0, 1, 0, 0, 1, 1, 1 ], omega ) / S; An object in the slice category given by: |8| → |2| gap> mu := AsSliceCategoryCell( L, MapOfFinSets( l, [ 0, 1, 2, 3, 4, 5 ], g ), G ); A morphism in the slice category given by: |6| → |8| gap> poc := PushoutComplement( lambda, mu ); A morphism in the slice category given by: |4| → |8| gap> Display( poc ); { 0,..., 3 } ⱶ[ 0, 1, 6, 7 ]→ { 0,..., 7 } A morphism in the slice category given by the above data gap> Display( Source( poc ) ); { 0,..., 3 } ⱶ[ 1, 0, 1, 1 ]→ { 0, 1 } An object in the slice category given by the above data gap> dpo := DPO( mu, lambda, rho ); [ A morphism in the slice category given by: |4| → |9|, A morphism in the slice category given by: |7| → |9| ] gap> Display( dpo[1] ); { 0,..., 3 } ⱶ[ 0, 1, 2, 3 ]→ { 0,..., 8 } A morphism in the slice category given by the above data gap> Display( dpo[2] ); { 0,..., 6 } ⱶ[ 0, 1, 4, 5, 6, 7, 8 ]→ { 0,..., 8 } A morphism in the slice category given by the above data gap> Display( Target( dpo[1] ) ); { 0,..., 8 } ⱶ[ 1, 0, 1, 1, 0, 1, 1, 0, 0 ]→ { 0, 1 } An object in the slice category given by the above data
gap> LoadPackage( "SubcategoriesForCAP" ); true gap> LoadPackage( "FreydCategoriesForCAP", ">= 2024.08-01" ); true gap> ZZZ := HomalgRingOfIntegers( );; gap> # HomalgIdentityMatrix( size, ring ) * matrix -> matrix > CapJitAddLogicTemplate( > rec( > variable_names := [ "size", "ring", "matrix" ], > src_template := "HomalgIdentityMatrix( size, ring ) * matrix", > dst_template := "matrix", > ) > ); gap> CapJitAddLogicTemplate( > rec( > variable_names := [ "matrix", "dimension", "ring" ], > src_template := "matrix * HomalgIdentityMatrix( dimension, ring )", > dst_template := "matrix", > ) > ); gap> # we do not use SliceCategoryOverTensorUnit because that installs more operations > # which we are not interested in for this simple test > category_constructor := ring -> > SliceCategory( > TensorUnit( > CategoryOfRows( ring : FinalizeCategory := true ) > ) > );; gap> given_arguments := [ ZZZ ];; gap> compiled_category_name := "SliceCategoryOfCategoryOfRowsOfRingOfIntegersOverTensorUnitPrecompiled";; gap> package_name := "SubcategoriesForCAP";; gap> CapJitPrecompileCategoryAndCompareResult( > category_constructor, > given_arguments, > package_name, > compiled_category_name > : operations := "primitive", > number_of_objectified_objects_in_data_structure_of_object := 3, > number_of_objectified_morphisms_in_data_structure_of_object := 1, > number_of_objectified_objects_in_data_structure_of_morphism := 6, > number_of_objectified_morphisms_in_data_structure_of_morphism := 4 > );
generated by GAPDoc2HTML