gap> LoadPackage( "ModulePresentationsForCAP", false ); true gap> LoadPackage( "QuotientCategories", false ); true gap> zz := HomalgRingOfIntegers( );; gap> zz_pres := LeftPresentations( zz ); Category of left presentations of Z gap> congruence_func := phi -> IsLiftable( phi, EpimorphismFromSomeProjectiveObject( Target( phi ) ) );; gap> name := "QuotientCategory( Category of left presentations of Z ) by projectives";; gap> quotient_cat := QuotientCategory( > rec( underlying_category := zz_pres, > name := name, > congruence_func := congruence_func, > nr_arguments_of_congruence_func := 1 ) ); QuotientCategory( Category of left presentations of Z ) by projectives gap> Display( quotient_cat ); A CAP category with name QuotientCategory( Category of left presentations of Z ) by projectives: 23 primitive operations were used to derive 134 operations for this category which algorithmically * IsLinearCategoryOverCommutativeRing * IsAdditiveCategory gap> m := HomalgMatrix( [ [ -2, 0, 0, -1 ], [ 8, 0, 0, 4 ], [ -43, 2, 1, -17 ], [ 6, 0, 0, 3 ] ], 4, 4, zz );; gap> M := AsLeftPresentation( zz_pres, m ); <An object in Category of left presentations of Z> gap> IsProjective( M ); true gap> quotient_M := M / quotient_cat;; gap> IsZeroForObjects( quotient_M ); true
generated by GAPDoc2HTML