‣ NaturalIsomorphismFromIdentityToStandardPresentationOfFpLeftModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{StandardPresentationOfFpLeftModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural isomorphism from the identity functor to the left standard module functor.
‣ NaturalIsomorphismFromIdentityToStandardPresentationOfFpRightModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{StandardPresentationOfFpRightModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural isomorphism from the identity functor to the right standard module functor.
‣ NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsOfFpLeftModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsOfFpLeftModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural isomorphism from the identity functor to the functor that gets rid of zero generators of left modules.
‣ NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsOfFpRightModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsOfFpRightModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural isomorphism from the identity functor to the functor that gets rid of zero generators of right modules.
‣ NaturalIsomorphismFromIdentityToLessGeneratorsOfFpLeftModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{LessGeneratorsOfFpLeftModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural morphism from the identity functor to the left less generators functor.
‣ NaturalIsomorphismFromIdentityToLessGeneratorsOfFpRightModule ( A ) | ( attribute ) |
Returns: a natural transformation \(\mathrm{Id} \rightarrow \mathrm{LessGeneratorsOfFpRightModule}\)
The argument is an additve closure category \(A\) of a ring. The output is the natural morphism from the identity functor to the right less generator functor.
generated by GAPDoc2HTML