Goto Chapter: Top 1 2 Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

CategoryOfHomalgFinitelyPresentedGradedLeftModules, for IsHomalgGradedRing 1.1-3
CategoryOfHomalgFinitelyPresentedGradedRightModules, for IsHomalgGradedRing 1.1-4
FunctorDoubleGradedDualLeft, for IsHomalgGradedRing 1.2-9
FunctorDoubleGradedDualRight, for IsHomalgGradedRing 1.2-10
FunctorGetRidOfZeroHomogeneousGeneratorsLeft, for IsHomalgGradedRing 1.2-3
FunctorGetRidOfZeroHomogeneousGeneratorsRight, for IsHomalgGradedRing 1.2-4
FunctorGradedDualLeft, for IsHomalgGradedRing 1.2-7
FunctorGradedDualRight, for IsHomalgGradedRing 1.2-8
FunctorLessHomogeneousGeneratorsLeft, for IsHomalgGradedRing 1.2-5
FunctorLessHomogeneousGeneratorsRight, for IsHomalgGradedRing 1.2-6
FunctorStandardGradedModuleLeft, for IsHomalgGradedRing 1.2-1
FunctorStandardGradedModuleRight, for IsHomalgGradedRing 1.2-2
IsCategoryOfHomalgGradedModules, for IsCapCategory 1.6-1
LeftPresentationWithDegrees, for IsHomalgMatrix 1.1-1
NaturalIsomorphismFromIdentityToGetRidOfZeroHomogeneousGeneratorsLeft, for IsHomalgGradedRing 1.3-3
NaturalIsomorphismFromIdentityToGetRidOfZeroHomogeneousGeneratorsRight, for IsHomalgGradedRing 1.3-4
NaturalIsomorphismFromIdentityToLessHomogeneousGeneratorsLeft, for IsHomalgGradedRing 1.3-5
NaturalIsomorphismFromIdentityToLessHomogeneousGeneratorsRight, for IsHomalgGradedRing 1.3-6
NaturalIsomorphismFromIdentityToStandardGradedModuleLeft, for IsHomalgGradedRing 1.3-1
NaturalIsomorphismFromIdentityToStandardGradedModuleRight, for IsHomalgGradedRing 1.3-2
NaturalTransformationFromIdentityToDoubleGradedDualLeft, for IsHomalgGradedRing 1.3-7
NaturalTransformationFromIdentityToDoubleGradedDualRight, for IsHomalgGradedRing 1.3-8
RightPresentationWithDegrees, for IsHomalgMatrix 1.1-2

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 Ind

generated by GAPDoc2HTML